

The most imeginelivegrephics progrtuming softwer
 itrequrspewrim
 $01.6607231 \sim$ *
 24 HOUR CREDIT CARD ORDERING
 Post in Depts Print 'a Plotitat Products Lta 19 Borough High Street. Lontion SET 9SE

PAINTBOX is a must for every 48 K SPECTRUM Ownet! It you wont to expioit the full graphics capability if your mochine you can do so .. simply ond easlly with PAINTBOX.
Take a look ot the screen prints shown above they are the sort of thing you could produce on your SPECTRUM
PAINT80X gives you on entire suite of graphics programming aids in one inlegrated progrom. For instonce:

UDG EDITOR

The tacility to detine ond re-deline up to 84 graphics characters for your progroms or for use in screen-plonning.

UDG DRAWINE BOARD

A fully-inlegrated UDG planner for detining up to 4 Bonks of chorocters Plonning focilities include MIRROR. INVERSE, ROTATE, FILE

SKETCHPAD

An experimentation "window" for developing the UDG set.
-

PRECISTON PLOTTER

An omozingly versatile high resolution drowing boord which includes PAPER choice INK choice PLOT, DRAW, CIRCLE, FILL, ARC, OVER, ERASE, and STORE!

SCREEN PLANNER

Combining PRECIS!ON PLOTIER and UDG charociers! A multi-purpose grophics focility to enable you to produce incredible screen graphics. All work can tie sent to o Printer ond SAVED as SCREEN er as CODE with its own bull-in machine code rouline for inslont recoll from BASIC.

The progrom comes with a DEMO program and o 28 page book that's packed with hinls and tips on how to gel the best from PAINIBOX.

PAINTBOX is ideally suited for use with the Print 'n' Plotter Speclrum Joller Package - the first ond best graphics planning pad for the Spectrum! So why not place an ordea todoy? Write, call, or see your local dealer

Pleose send me

PAINTBOX SOFTWARE © $£ 750<+759 \mathrm{p}+\mathrm{p}$ SPECIRUM JOTTER PADS \& E 750 (£1.50 p +p fotol E 9)
SPECTR 1 M KEYBOARO OVERLAYS B E280 (35p $p+p$ lotnt $c: 295$)
 lotol 51250)
\square Ienclase remefance in hull
\square Please bill my Access/Barclaycard/Visa/ Masfercord No:

Overseas arders pleage ond 25\% for odditionel

 surfoce moil role NAME\qquad
pentis
1
1

5 NEWS
QL orders flood in and the $\mathrm{ZX}-81$ receives added power.

5 LETTERS

Your views and problems.
6 REVIEWS
John Lambert assesses some of the latest peripherals in-depth.

9 OL REVIEW

Mike Wright considers the possibilities of the new Sinclair machine.

11 PROFILE

Nigel Clark meets David Karlin, the man behind the QL.

14 FLEXI-FILE

John Davison describes how to make a filing system for all occasions.

19 SPECIAL OFFER

We repeat our popular offer of the ZX-81 kit.

22 CENTRONICS INTERFACE

Richard Sargent builds a one-chip interface for the Spectrum.

31 MATHS PRECISION

Stephen Rush shows how the accuracy of calculations on the Spectrum can be improved.

38 ROBOT ARM

An easy-to-build arm which shows the possibilities of bigger products.

44 DIGITAL ELECTRONICS
Joe Pritchard continues his series which helps you to understand the theory behind our projects.

48 SHOPPING LIST

Our regular section showing sources for items which are not commonly available.

48 UPDATE

We return to earlier projects.

YOUR Sinclair Projects has changed this month. To reflect the interest and needs of readers, we have expanded coverage of matters in the Sinclair hardware market and made improvements to the traditional areas of the magazine.

Our aim is to make Sinclair Projects the complete hardware companion for your Sinclair machine - essential reading for those who want to know how commercial hardware works and how you can build something yourself.

To achieve it we will be reviewing in depth all the latest peripherals on the Sinclair market, showing what they do, of what they comprise, and how they perform their tasks, This month our chief reviewer, John Lambert, looks inside the Dean Electronics thermal printer and the Fox Electronics programmable joystick for the Spectrum, among many other items.

We also intend to provide lengthy reviews of important products or comparisons of groups - of peripherals which perform similar tasks. In this issue Mike Wright considers the possibilities of the new QL, the Sinclair Quantum Leap.

The world of computers can often seem an inhuman place but without people there would be no machines, no programs, no users. From now we will be promoting the tuman aspect by meeting some of the people behind the latest machines or developments.

Everyone is talking about the QL at the moment, so Nigel Clark went to speak to one of the men behind its development. Though still a young man, David Karlin has already done a great deal in the world of micro-electronics.

The number of build-il-yourself projects has been reduced from six to four but they are still as interesting as in previous issues. With the growing interest in robots, as shown by the number of readers who have enquired about the Prowler, we have a project to build a simple arm. We have made the device as uncomplicated as possible, so that we give the essentials of what is involved while still making something useful.

In a project for the Spectrum, Richard Sargent shows how to build a one-chip Centronics interface. That is the industry standard interface for printers and should interest anyone wanting to improve hard copies of information.

The other two articles are software projects. Both have been chosen because of their heip to serious users of the Spectrum. One permits people to build a flexible filing system which can be used to accommodate a variety of records. The other shows how accurate mathematics can be performed.

[^0]
Upgrade your 16K
 ZXSPECTRUM Now!

The CHEETAH 32K RAMPACK simply plugs into the user port at the rear of your computer and increases the memory instantly to 48K.

* Fully compatible with all accessories via rear edge connector
* No need to open computer and invalidate guarantee
* Why send your computer away and wall weeks for upgrade
* Fully cased tested and guaranteed.

Why wait any longer?

Only $£ 39.95$ including VAT and P\&P.

Now make your Spectrum and ZX-81 Talk

The Cheetah "SWEET TALKER" just plugs into the back of the consputer using the existing power supply. Based on an allophone system you can easily program any word sentence or phrase. Fully cased, tested guaranteed and compatible with all accessories via rear edge connector. Complete with demonstration cassette and full instructions. No more lonely nights! Simply incredible at £29.75 (Please quote when ordering whether Spectrum or ZX8 1 owner)

$$
\begin{array}{ll}
\text { 16K RAM Pack for ZX.81 } & £ 19.75 \\
\text { 64K RAM Pack for } \mathrm{ZX} 81 & \mathbf{£ 4 4 . 7 5}
\end{array}
$$

Prices melude VAT, postage packing. Delivery normally 14 days. Export orders at no extra cost. Dealer enquiries welcome.

Send cheque PO now to
CMEETAH MARKETING LTD
Dept SPJ
24 Ray Street
London EC1 R3 DJ
Tel: 01-278 6954
32K RAM Pack and "SWEET TALKER" also available from larger Branches of

DESPITE having large amounts of computing power at their disposal,
 facilities at a low cost - the ROM costs only $£ 25$.
 ZX-Microdrive design frozen

many large companies are using the ZX-81 to help them with their research. They have discovered that the little machine, with the addition of the Forth ROM cartridge from Skywave Software, gives them many

QL orders rush

SIR CLIVE SINCLAIR'S reputation for launcling good products is such that orders for the QL have been flooding in. The only machines to have been seen so lar are those on display at the launch yet there is now a) waiting list "well into the thousands".

Although the first machines were expected to be delivered early in March, the unexpected rush means that a backlog will develop.

There were more than 400 orders in the lirst two days after the launch and now they are arriving at 500 a day.

David Husband of Skywave, based at Boscombe, Bournemouth, says he was surprised at first when be started receiving orders from large companies such as ICl , universities and a number of Government establishments. "It does not surprise me any more; they just realised what can be done with the ZX-8I and the ROM," he says.

The ROM with its multi-tasking capability makes the $\mathrm{ZX}-81$ a useful controller of applications, particularly in laboratories and as a teaching aid. Husband says it would be ideal lor a project such as the weather station being built in Sinclair Projects, where the measurements of temperature and pressure could be performed at regular intervals but the user could still program the machine. It is also possible to have a number of windows on the screen in the same way as the new QL.

THE DESIGN of the Spectrum Microdrive has been frozen and there are no plans to make the improvements which have been made for the QL Microdrive. A spokesman for Sinclair Research said most of the changes had been cosmetic but admitted that they allowed an additional 15 K of storage to be guaranteed for the QL. version.

The 2X Microdrive sold for the Spectrum has a minimum of 85 K of storage, whereas the QL. Microdrive could supply 100 K .

David Karlin, one of the leading members of the QL design team, said that a number of engineering changes had been made and there had been a great deat more error-checking and attempts to increase the performance of the controller chip.

A spokesman added that the changes would be difficult to implement on the ZX Microdrive.

Plea for rampack

AS A fairly new owner of a ZX-81, I am still using the unexpanded IK version. Now, however, 1 wish to expand to the much more useful 16 K package. Nowhere can I lind a circuit diagram for an add-on RAM pack. Can you advise me of anyone who can supply a RAM pack in kit form? The object, obviously, is to do the job as cheaply as possible.

R J F Richardson. Harrogate.

- A 16 K RAM pack is a complicated circuit and since they can be obtained ready-huilt from as little as about f15 is is not worth considering trying to make one. The parts alone would probably cost as much.

More support call

HAVING bought the October/November issue for the purpose of constructing the Battery-Backed RAM, the first three-quarters of page were completely over my head. I was therefore very disappointed to find that not only was I unable to understand the article but the RAM board was of a rather strange capacity i.e., 8 KB .

When programming my 2X-81, using the 16 K programs freely available in the computer magazines, I frequently experience problems with supply voltage fluctuations and computer screen Iock-up. The only way to restore computer functions is to re-set the mains supply, therefore losing the program, if not already lost.

I understand that the problems are usually found with the ZX-8I but you can see that this problem requires a 16 K battery-backed RAM. Is il possible to modify the 8K RAM project to function as a 16 K board by using more 2 K RAMs or different components?

K J Bryan, Deal, Kent.

- You misunderstand the purpose of the batterybacked RAM. The project was to allow one to store machine code routines rather than Basic programs and is mapped oufside the Basic program area. To overcome your problem, you could build the battery-back-up system of the December/ Jantary issue.

Teleprinter printer

LOOKING through Sinclair Projects and considering building the Radio Teleprinter, 1 decided to write a sloort machine code subroutine to simulate the output from the interface. It showed two problems with page 17, the machine program which I have not noticed in Update:

Line 16514 Data: missing a 00. Dec, address 16523 should read 16528 .

At 16600 the call address given may be satisfactory fot old ROM users but it caused me a lew headaches. I think that new ROM users should have :

[^1]
Cheap connector for the Spectrum

THE NEW $1 / O$ port from Multitron gives the Spectrum a means of communicating with the outside world. Using the port it could control motors, turn lights on and off, or detect when a switch has been closed. What it does is to transfer signals to and from the outside in a form the CPU ean understand.

The port is an uncased PCB with through connector based on the Intel 8255 AP-5 chip. The ckip has three 8 -bit ports -A , B and C - and a control register D , the addresses being $31,63,95$ and 127 respectively. Each port can be set to either input or output, with the upper and lower nibbles of port C capable of being set independently to either.

Two more modes of operation are available which allow strobed 1/O with handshaking and strobed bi-directional operation; in both cases the data can be latched. Details are given in the user manual.

Connections to the board are either by a 28 -way Spec-trum-style edge connector or Soldercon pins - breadboard style. The manual gives comprehensive details of how the port works and how to set it up. It also includes two brief programs, one to make the port test itself and one to show binary numbers being outpat to LEDs.

One thing it does not do is to give simple circuit diagrams to show how 10 connect a LED or perhaps a relay.

Priced at $£ 13.50$ plus 35 pence p\&p, including manual, it provides a cheap introduction to control applications, Available from Multitron, 5 Milton Close, Headiess Cross, Redditch, Wores B97 5BQ. Tel: 0527 44785.

Sinclair thermals

DEAN ELECTRONICS has recently introduced a Sinclair-compatible thermal printer, the Alpheom 32. It is manufactured by the American company which produces the Timex-Sinclair 2040.

The printer plugs into the rear connector of either the 2X-81 or Spectrum and will accept the standard commands of L.PRINT, LLIST and COPV, so existing software can be used without alteration. Using 110 mm . wide white thermal paper, it produces a very readable output at a speed of roughly two lines per second.
The printer casing is approximately 195 mm . \times 140 mm . $\times 55 \mathrm{~mm}$. blackmoulded ABS, with a perspex blister on top which holds the paper. Two wires emerge from the back, one - about 150 mm . long - to an over-size edge connector containing a 74L.S10, used to decode A7 and A2, and a ferrite ring to suppress interference. It has a ZX-81 size connector to the computer and a through port for RAM packs. The other lead connects to the supplied external power supply
by way of a male 3.5 mm . jack plug. Inside the printer there is a minimum of electronics - a ROM chip, marked TS2040, to handle the printer operations; five chips to control the printing mechanism; a handfut of discrete components; and two PCB-mounted switches to turn the printer on and off and to advance the paper. Use of both switches together performs a self-test function.

The bulk of the space is occupied by a very solidlooking, rubber-mounted printer mechanism. The printhead is made of a ceramic material into which 20 wires are inlaid. As they are moved across the paper they burn off the top surface of the paper to leave a black ink impression.

Each wire covers iwo character squares in a zigzag fushion which shows up the only disadvantages. When doing a COPY the zig-zag is noticable on any solid blocks of ink.
The printer becomes warm in use but that is not a problem, as there are adequate ventilation slots on the top and bottom and a large heatsink inside. On a Spectrum the edge connector lead fouls the power lead, making insertion difficult and it does not fit flush at the bottom, making the Spectrum slightly unstable.

Costing 559.95 , including power supply and one roll of paper, with extra rolls of paper at only K , the printer must be seen as a good alternative to the Sinclair printer. The Alphacom 32 is obtainable from Dean Electronics Lid, Glendate Park, Fernbank Road, Ascot, Berkshire SL5 8JB. Tel: 0334885661 and branches of W H Smith.

Sound made in stereo

FOR THOSE with a musical bent who have a Sinclair machine, help is at hand. Not a masical bent straightener but the Tricord from Petrons is a stereo programable sound generator board in swo versions, with and without an internal amplifier and speaker, for both the ZX-8i and Spectrum.

The Trichord has three basic modes of operation. First, using an in-built PROM, it can reproduce any of 255 sound effects ranging from one described as a low bong to a steam engine and whistie, plus many indescribable ones. Second, it can be used to play three-pari harmony and, finally, the internal registers of the PSG chip can be accessed to produce your own sound effects.
All versions of the Trichord are the same-sized black plastic box which has a 2X-81 connector and through port. On a Spectrum that means that only a Sinclair printer could be plugged into the back of it.

Inside the box is an AY-3-8910 PSG chip. It has 14 internal registers to control the frequency and pitch of three sound channels, the pitch and channel of a white noise generator, separate volume controls, and has eight in-built envelope shapes for which the period can be altered.

The Trichord is probably the most versatile sound generator on the market at the price.

Petron Electronics is at Courtlands Road, Newton Abbot, Devon TQ12 2JA. Tel: 062662836.

Disc driving on the Spectrum

LATEST in a suciden crop of dise interfaces for the Spectrum is the FDC-1 Mk2 from Technology Research. It will accept up to two 51 in . drives in either 40 - or 80 -lsack, single- or doublesided format and is complete with a utility disc.
The interface plugs on to the rear user port and provides a through port for other add-ons, drive cable and connector and a socket for the Spectrum power supply. On power-up the contents of an EPROM in the interface is loaded into the upper 4 K of memory and a jump is made to the DOS, where a password has to be entered. The password has to agree with a password held on the dise to allow access.
At that point the full range of commands becomes available - LOAD SAVE of Basic or machine code, both of which can be auto-run; ERAse a file on disc; and an INITialisation routine for new discs. The inilialisation is carried-out after a new dise has been FORMATed using a program on the utility dise and stores the current password on the dise.

Initialising a dise will wipe it, so an additional command LOCK is provided to prevent that happening, if required. DIRectory will give you provided you have the correct password - a list of the files and their length, plus the amount of spare space. Two additional com-
mands are available for random access of the disc, PUT and GET, but our provisional copy of the new instructions gave limited details, although we are assured that will be remedied on the proper instructions.

Inside the interface are two PCBs; the tower one takes the lines across to the rear connector and holds the power socke1. The upper one holds the main electronics, a dise operating chip - a 1771 - the EPROM and a good deal of buffering around the cable socket. The 1771 is a relatively old dise chip and cannot provide double density but by using two boards it is very easy to change one when, at a later stage, you need that feature. The buffering on the cable is particularly useful, as the interface uses the same standard as BBC machines and a drive can be disconnected without crashing the system.

In use, the interface proved reliable. The only time it crashed was when trying to save a program without giving it details of program length and start. In that instance the interface defauks to saving the whole 64 K but the drive did not appear to like the idea and just spun aimlessly. Apart from that it worked first time, every time.

Machine code users who normally use the upper memory for their routines are catered for as Technology Research can, for a
nominal fee, provide the DOS assembled anywhere in the upper 32 K .

With a 40 -track, singlesided drive the interface gives 97.5 K of file space, with 2.5 K being taken by the directory. Larger-capacity drives lose a similar percentage.

Priced at e85 plus VAT. the interface is rather expensive but is allows the use of drives not dedicated to one machine; also if an 80 track, double-sided drive is used, you have 390 K of file space at less than $£ 2$ a time.

Technology Research L.td, 356 Westmount Road, London SE9 INW. Tel: 018568408.

Joystick variety

NEW FROM Fox Electronics is a programmable joystick interface for the Spectrum. The interface plags into the rear connecfor of the Spectrum and has a through connector for other add-ons. On the righthath side of the case is a standard 9-pin. D-type, Atari-style socket for the joystick and one switeh.

To use the interlace all you have fo do is put up the switch, which then displays a menu on the screes. You then have the option of creating a new key set from any of the 40 keys, including the shift keys and EN. TER, or selecting, with a single keystroke, one of the 16 sets already created.

Pressing the E key exits to Basic ready to load a game and programs the joystick. If necessary, the key sels can be saved on tape.

Leaving the switch down will make the Spectrum ignore the interlace unless
you are using another addon which uses the ROMCS line; if so, you may find that a clash oceurs.

Inside the interface is a 2 K CMOS RAM, the 6116 LP , and a small ni-cad battery. When in use the battery is kept topped-up by the Spectrum power supply, via a 7805 regulator, and on power-down maintains the memory for a minimum of six months.

On putting up the switch the interface pages-out the Specirum ROM and jumps to the program held in its RAM. The program then Iransfers into the Spectrums RAM, pages the ROM back in and puts the menu on the screen. On pressing the E key, the program transfers back to its own RAM, sels up the joystick and calls the NEW routine. Any new key sets created are saved in the process.

All that is clever and provides the easiest interface on the market today but it also provides two by-produets. First, when the switch is put down, the interface causes a hardware re-set. That is to say if you have a game running you can jump out ol it without having to pull the plug - a saving of plug wear. Second, details are available from Fox for a machine code programmer to tuse the interlace as a pseudo ROM. Often-used routines could then be loaded at the flick of a switels.

When used with a Microdrive, the Spectrum power lead fouls the joystick lead, making insertion difficult. At $£ 28.50$, the interface is very good value. From Fox Electronics Lid, 141 Abbey Road, Basingstoke, Hampshitre RG2I 9ED. Tel: 0256 20671.

Kempston interface prints defined graphics

NEW from Kempston Electronic is the model E Centronics interface for the Spectrum. It contains an EPROM which enables it, on power-up, to direct the commands LPRINT and LLIST direct to the printer without the need for additional soltware. Also buill into the EPROM are routines which allow the use of COPY for the Epson and Siekosha range of printers.

Housed in the standara Kempston case, the interface plugs into the user port of the Spectrum and is complete with a cable to connect to the printer.

The interface is deadended in that it does not have a through port for
other add-ons. That may be a problem if you want to use it il the same time as the Kempston joystick interface or any other dead-ended device. A difficulty which may arise with full-size keyboards is that the case is shaped with a lip to fit on top of the standard Spectrum. The lip may prevent the case finting snugly.

Inside the case is a 2 K EPROM which houses the printer soltware and a handful of chips which deteet when the Spectrom is using the LPRINT. LLIST and COPY commands. It does that, for example, with the COPY command, by monitoring an address, and when the Spectrum uses it
to do a COPY the interface takes over and directs output to the printer.

Using the interface is very simple. If only text is to be printed, no setting-up is needed, apart from POKEing an address with the number of columns required if that is other than the default setting of 80 . The address is one of the unused ones in the system variables area.
To use the COPY command the interface must be set up for your type of printer. By entering as a direct command COPY: REM? the inserface displays a menu page which shows its current status. You can then set it up for the Epson range. Scikosha 100 or 250 printers, or add your own routines. Once you have set it up in that way any user-delined char-
acters or graphics characters which appear in a listing will be printed as shown on the sereen An annoying leature is that those characters are wider than normal and make the listing appear untidy.

For computer artists there is an enlarged setting. When it is turned on, COPY will produce a double-sized copy, about 180 mm . \& 145 mm , on an Epson, suitable for hanging on the wall. Other settings are available to control the tokens, escape characters and automatic line feeds.

At 555 inc, the interface is by no means inexpensive but has many usefui features. Details from Kempston Micro Electronics Lid. Unit 30, Singer Way, Wobum Road Industrial Estate, Kempston, Bedford MK42 7AF. Tel: 0234856633.

Choose from our M50 range of exciting products all designed to assist the hobbyist in building an interconnection system most suitable for his particular application:
headers; sockets; colour coded cable; DIP connectors; sub-miniature D25 way plug, socket and hood.
With the M50 you get much more than iusta good contact. You get a complecte interconnection system that includes the cable.
Our new catalogue containing over 150 new products is available now
For further information on these products ring (04215) 62829 or write to:
Your Interconnection System for the Microcomputing World

\section*{| BICC | vero |
| :--- | :--- |
| BICC-VERO ELECTRONICS LIMITED | |}

Retail Dept, Industrial Estare, Chandlers Ford, Hampshire, SO5 37R

Real computing power at a moderate cost

Mike Wright reviews the latest machine from Sinclair Research and finds much of which Sir Clive can be proud.

THE NEW MACHINE from Sinclair Research, the QL or Quantum Leap, promises to live ug to its name and to be a major revolution for people in business who want real computing power at moderate cost.

The hardware is designed merely to provide large computing power at a reasonable cost but the supporting software and expansion facilities are all aimed at the professional and small business market.

INTEL 8049

The QL measures $5 \mathrm{in} . \times 1 \mathrm{in} . \times$ $181 \mathrm{in} .$, weighs a little more that 3 lb. and can be connected to either a monitor or a television screen. A colour monitor will give a wider screen and a greater resolution than a television sereen. The machine features the Motorola 68008 32-bit processor with 128 K of user RAM; 32 K is reserved for the sereen display, which in its bighest resolution gives 512×256 pixels in four colours or 26×256 pixels and eight colours.

An intel 8049 is also used in the CPU controlling the keyboard, sound, RS232C receive and real-time clock functions. That leaves the 68008 to look after all the prinicipal
functions and in all there is IMB of non-segmented address space available.

Four custom-buitt chips are also included. The first, dual-sourced from Plessey and Synertek, controls display and memory; the second, dual-sourced by NCR and Syncrtek, controls the other major functions, including the Microdrives, local area network and RS232C transmission: the third and fourth from Ferranti provide analogue functions required by the Microdrives.

There is a 65 -key, full-travel keyboard. The introduction of the keyboard means that the traditional use of keywords on other Sinclair machines will not be possible. It is complete with two built-in Microdrives and the ability to connect six more. They are improved versions of SpecIrum Microdrives and are not compatible with the Spectrum, alt though with re-formatting the cartridges will be.

MICRODRIVES

Other features include a ROM cartridge slot which will allow the ROM to be expanded by 32 K , an expansion slot for a 0.5MB RAM, two RS232C ports and two joystick ports. The QL
should also be able to link to 63 other QLs or Spectrums.

The cost of all those facilities is a reasonable $£ 399$ but before it can be put to use a monitor or a television set and a printer will be needed. That will add about $£ 300$ for a colour monitor and $£ 250$ for a reasonably good-quality dot matrix printer.

Even with those additions, the cost compares very favourably to existing systems. Sir Clive Sinclair said at the launch: "For f 800 you can have a word processor better than anything you can buy currently."

Despite those cost-bencfits there are several points which must be worrying to potential business users. The biggest of them is the decision to stay with the Microdrive, although in an updated and improved form, instead of using floppy dises as back-up storage. Since the introduction of Microdrives last year, some experts have been worried by the performance of the drives and by the use of continaous loop of video tape.

In addition, there is no connection for a cassette recorder. Although loading from a cassette is a slow, tedious business, a cassette copy of a program is usually fairiy reliable and it is cheaper to produce commercial progranss on cassette.

The cost of a blank casselte can be as little as 15 pence if bought in large numbers, while the costs of a Microdrive cartridge is about $£ 5$.

DISC PLAN

It is also interesting to note that Sinclair Research plans to produce a hard disc interface, while it has no plans to produce either a dise drive or a floppy dise interface. The cost of a hard disc could be two to three times the cost of the computer.

Another point to consider for users with large amounts of data is that once the RAM expansion has been fitited the QL has 640 K of RAM. Each Microdrive cartridge holds only a maximum of 100 K .

In keeping down the costs of the new machine, Sinclair may have sinned by omission for business users. The indussry standard interface for
interface.

The QL is equipped with two RS232C ports but not a Centronics port. Most printers are fitted with a Centronics interface while the RS232C is offered as a more expensive option. An alternative would be to wait until Sinclair produces its planned Centronics interface but that again means extra cost.

For its operating systems, Sinclair Research has developed ODOS for whick there are some elaborate claims. It is able to run more than one program at a time, it can divide the screen into a number of windows so that different displays can be shown simultaneously and input-output is device-independent.

The language used is another in the growing family of Basics, this one being called Sinclair Super Basic. It is said to be "a radical enhancement of Spectrum Basic." That makes for the same problems people found when
they changed from the $\mathrm{ZX}-81$ to the Spectram. They will not be able to upgrade their machines while retaining their favourite software. Even if the program is on a Microdrive cartridge, it will not be possible to use it on the QL .

The feature which will interest nontechnical users is the suite of programs written by Psion specifically for the QL. They are described by Psion managing director David Potter as "more powerful and functional than existing products for desk-top computers costing up to $£ 5,000$."

OPTIONS DISPLAYED

The stite has been designed for usability by a mass market with no prior training. It is said that even the most inexperienced person can perform useful tasks immediately, while experienced users can achieve a remarkable level of sophistication.

There is a word processor, a spreadsheet, a database and a busj-
ness graphics program. They are integrated in style, structure, design and, perhaps most important, in the sharing of information. The last feature allows data to be transferred between programs so that information from the database or spreadsheet can be transferred to the graphics program where it can be represented graphically and from where it can be moved into a document for printing.

Although the manual contains large sections on all four programs, information on the present status and options available are displayed in English at the top of the sereen.

The QL appears to live up/ to Sir Clive's claims that it is a quantuns leap for the company and computing. It is aimed at the business market and it would appear to satisfy the demands of people in business. Sinclair Research, however, appears to be hedging its bets by including joystick ports, so that games can be played on it.

THE MOST DIFFICULT job in designing the new Sinclair QI. was to reduce the pin count to a satisfactory kevel. That is the view of one of the leading members of the design team, David Karlin.
"We spent the lirst two monlhs Irying tor reduce the pitn coum to 80 ," he says, aldding that it was one of the major reasons for choosing the Moforola f8ok for the main CPU chip. Using the ability of that chip 20 process inlormation in 32 bits bul having only an 8 -bit bus allowed for a big redaction in the number of pins.

32/8-BIT

The chip, however, caused Sinclair Rescarels somte problems in decidirg how to deseribe the mathine, ldeally it should tre a $32 / 8$-tit machite but that is wot a generally-accepted namsing system and it was thought it would have been corsfusing.

Karlin adds that whatever it was calkd, ill the soliware would look like thal for a 32-bil mathine.

The full CPU eomsists of the 68008 operating at $7.5 \mathrm{MH} /$ for all the principal functions, while a second processor, the Intel 8049, controls the keythard, sound, RS232C receive and real-time clock functions.

The operating system. called QDOS and developed by Sinclair, is said to include a number of key leatures such as singte-user multiple tasking, time-sliced priority job seheduler, display handling for multi-ple-screen wirsdows and device-independent input-output.

It has 1MB of mon-segmented address space, which makes possible a wide lamily of peripherals and enhancements. Of that, 32 K is used for the screen bit map; a small amount i used for other functions leaving, on the unexpanded 128 K machine, about 96 K of usable memory.

The RAM can be extended exter-
mally to 640 K and the 32 K ROM can be expanded by ROM tastridge to 64K. The Ql uses Super Basic which is said to be a great improvement on the Basic used in the Spectrum.

There are four other chips which are designed to Sinelair specifications. Two have been dual-sourced to enstre there are no difficulties with delivery. The lirsi, which sontrols the display and memory, is supplied by Plesscy and Sunertek. The other, From NCR and Symertek, controls the other major functions, ineluding the two Mictodrives, local area network

and RS232C' Iransmission. The other two chips are supplied by lierranti and provide the analogue functions required by the Microdrives.
Karlin says that once Sinclair had set the specifications for the chips discussions were started with a number of manufacturers to discover not only if they could meet the technical requirements but also if they would be able to supply the chips in sufficient numbers. Having decided on the companies, the design work was done independently.
"Rather than have one company do the design work and then supply the other with a mask, we thought in better to have each company do its own design," he says.

That was an area which threatened to become one of major difficuley. When the first prototypes were received from the manulacturers they did nol work in the system. "We checked them thoroughly and eventisally found that there was nothing wrong with thens. The problenss had been external," Karlin says.

He followed the development work all the way through and listening to him talking about it would be casy 10 think thal he had been involved in nothing nore than a making a few simple improvernents to the Spectrum. Many obscrvers, however, are alteady saying that Sinctair Researeln is lully fustilied in saying that the new machine is a quantuan deap of similar proportions to that which brought compuing power within the reach of millions with the introduction of the 2X-80.

Existing machines which use sintilar technology cosi a mimimum of [3.500 and to upgrade existing micros to provide comparable facilities it is estimated the cost would be almost $£ 2,000$. The QI. with its soltware support costs £399.

GENERAL RESEARCH

Karlin has been with Sinclair Rescarch since August, 1982 when he relurned lron the States, where he had been working on general research for Fairchild in Palo Allo, California. Although born and educaled in Britain, be wemt to the U.S, after leaving Trinity College, Cambridge, where lie lad been studying \quad mix of engineering and electrical sciences.

He decided he wanted to return to Britain, contacted Sinelair Rescarch which was looking for rescarchers at the time, and was given a job. Since then he has worked on a number ol progects bul his main work has been on the developigent of the QL.

From conception to launch took only 14 months. "The first six

monnths were spent designing the ICs and the last cigh months were needed to debug them," he says.

In that time, litile chasiged from his original ideas of what the computer should contain. "I would have liked (o) include a $£ 20$ colour thate and we decided to increase the RAM to 128 K at a fairly late slage bul the overall designt was nuch the same as ray original ideas," he says.

He emphasises, though, that the design was a co-operative eflort by a number of people at Sinclair Restarch.

PORTABLE MACHINE

"'It was not a simple mazter of Sir Clive giving ths a specification and the rest of us producing a machine to satisfy that," he says. "We were all throwing around ideas, some of which we used and others we did nol."

One of the earty ideas, given wide publicity by Sir Clive, was a portable machine with its own power supply and flas-screen television and two Microdrives. Karlin said, however, that that had been decided against early in the development stage.

Having two Microdrives fotmed part of the linat machine, although improvements have been made on
those which are used with the Speetrum. Although much of the drives las femained the same, with storage in the region of 100 k and an average alcess time of 3.5 seconds, Karlin says they have been "improved a great deal'*.
" We made a number of engineerittg changes, put in a great deal more error-checking and wied to increase the performance of the controller chip."

He cannut say if those improvethents wilt also be made to the ZX Microdrives.

Karlin defends the decisions to omit Iwo facilities, a Centronics intesface and a cassette recorder connector. With the OL having a ROM cartridge slot and Microdrives, he sees no necessity for inpulting information from cassette.

The reasons for including an RS232C rather than a Centronics interface were more complicated. White agresing that the Centronics is more usual at the moment, he says:
*The Centronics interface is more expensive and occupies more board area than the RS232C but docs exactly the same job. The problem is that it - the industry standard but we think that with our using the RS232C more people will start using it as well."

Karlin is confident that the QL represenas 14 montlas well-spent. He sces ant immediate market for the machine in the professions and higher education, parlicularly for university studenss who have large caiculations to do or theses to write. In addition, there is the snaal business market where he thinks large numbers can be sold, not only because of the price but "because of the large amesunt of business software and the quality of that soliware."

PLENTY OF IDEAS

Sinclair Research is also confident about the machine and it intends to publish ROM information as soon as it can get it together from alt the inlernal documents.
"Everything we have done has been done very carefully so that we can be confident it will work, " Karlin says. "We did not publish that information about the other machines because we wanted to be able 10 change things if we found it necessary."

About any future work with which he is involved at Sinclair Rescarch, Karlin is keeping very quiet. "There are always plenty of ideas being thrown around at Sinclair, so 1 do not think there will be any shortage of work," he says.

IEPROM SERVICES

ZX hardware specialists

industrial microsystem design and manufacturer

 EPROMS for ZX81'Th $\mathrm{ZXB1}$ AK EPROM board ailkw derect access $\operatorname{lo} A \times 2 K 2716$ EPROM5 of 6115 RAM"\& It titsin ling with the ZXPRINTEN and RAMPACK and contams Hs own pawer supply compononta the board for card for use with a mother board cosis [19 85 and comes complata with dither EPRDM I or il
Further preprogrammed EPROMS are aratable priced c9.95 each
EPROM I 40 toallat routirns EPAOM it aeplo EPAOM I 40 toalkit roulinns EPAOM il RAPID SAVEILOAD. IBK in one
 mictine code mortutor, EFROM V a 280 dialassembier

EPROMS for 21 SPECTRUMS

Fhe BK \$PECTRUM EPRUM DOArd is avanlable complele wath ond pro

EPROM PROGRA WRER FOR ZXA1 © SPECTRUM

ProgramsINTEL 2715, 32 32A, 54 and 128 ZIF 50chet 54.75 . AUTQSTART runs is programme stored in EPROM on power-up C9 5

DAYA AQUIBITION AND CONTROL

A wido range deraturara for control and monitaring purposes 3 bullexed precishon הnglogue oulpul card e26 95 Ti anglogue input card im various degrefe at acculacy, Trom 2239524 line INHOUT Cards wih various options ITRmE1A50. 12 Inpu OPTOISOLATOHE23.95, 4月 IENE MULTIPLEXEAC9 95 COUNTERITMEA CIJO5. REAL TIME CLOCK E21.95 3 sloI MOTHER

AUDIO GFNEFATOM C20 OS ZXA1 GRAPHICS GOAMD £2450 AS23?
 or 28 wiry Edge Cards $75 p$ Angte Cards i, 1525 or 26 way Gotd Eegge

EpRom SEAviCES

Ledorca so

VELLEMAN

INTERFACE SYSTEM FOR SINCLAIR ZX 81 AND ZX SPECTRUM

Tuln your computen into a plactical and uselul mstrumem
Vollentan inteoduce thent mitetace syspem constatime ut a specitis. motherhoard for nach type wl computer, and mitarfoce cards that ean la: plugaed ontos the momberboards

K2618 Mothorboard for $2 X$ B1 KıIthin
E25.69

E25. 69
tnteriace carde now availshle:
K2G09 - DC outgut liratis with oper collector outguts 125 V:50

K2611 - R oplacountan mput:
K2614-Centromics parallef printor interlaco
ع20.65
K7t1a- D/A converter, 8 bit preciston.
[30.83

OTHER NEW KITS IN THE VELLEMAN RANGE
K2501-51rabsmcope
E 10.79
K2602-4 channet rumrung tight with modutotor
C2D. 65
K2604-Kojah Sners
K2G06-LED Aurto powei moler
r 6.94
(all מatees melusive ol VAT!
SEND FOH NEW FULL COLOUR SHEET DETAILING
COMPLETE RANGE avoilable tree IIom

VELLEMAN UK.

P.O. Box 30, St. Leonards-on-Sea East Sussex TN3 7 7NL, England.
Telephone: (0424) 753246

Volleman kts are also ovatoble from the following: AvON: L.f. Hanney 77 Lowur Road, Bath. BERKS Lovering Bros. FS King's Road, Reading BLACKPOOL: Etuson Electionics, 15 B Lower Green, Paution Lo Fylde
DEVON: $\$$ \& Brewster. Union Sircel. Plymauth,
ESSEX R. Jomes Eteetromics, 267 Rectory Road, Grays. GLASGOW: Marshalls Electronics. 86 West Regent Streat. HERTS: Hemmings Electranics is Prand Sireat, Hitchan. IREkAND: Baxal Tele Exports, Co Wicklaw
LIVERPGOL. Prograssive Radio. 93 Date Street LONDON: Bradley Marshall, 325 Edgwore Road MANCHESTER Spection Electromes. 7 Oldfield Road, Suliarat NORTHANTS: M.W. Associates, 10 Ciown Street, Kettering. SUAREY: O.R. \& J.G. Taylor. 24 Betkenshaw Gordons. Woodman. sterne
WhLTS: Camlab Electrones. 27 Faringdom Road. Swindon.

THROUGH THE YEARS I seem to have ambassed a com. siderable quantity of paper. wark containing information on a wide variely al mopes, mast ar which I woukd nol wam to dingose ol, bul to whicls I seldom reler. Whike I was ansious to keep the information. I Wals equally heels to reduce the volatre al paper. The obvinus solution was to store it oh cassette tipe.
In looking for a suisable file program I suon realised that mest of these available, or published, hald one of two tailings of a pre-determined lixed kenglta and/or a large number of relatively shor records. In both re speces that was the precise oppessite of "hat wels called tor: 1 needed to store fairly long individual records and have total ilexibility of record length. The answer, of course, was to write the progran to suit my requirements. Flexi-Fite in she rexult.

TEXT FLLES

Initially 1 used it to create files of histurical and geographical informarion but given its inherent tlexibility t have sime used it for a variety of ather (ypes of information, iatluding emporary text liker such as the first drafi of an articke. There is no restriction as to its use. If you have any information in the form of a subject heading - record name - and lextual details record entry, Flexi-Fite is for you.
In addition to reducine the sheer bulk of your filing system, Fiexi-Filc offers basic text-handling functions. Let me make it clear now that the program is not a word processor; to achieve that on the Spectrum requires a machine code program. While 1 admire several features exceptional to Sinclair Basic, not least the stringhandling utilised to the full in this
programs, its speed in not impressjue whell compared, for irsalance, to BBC Bisic. tronically thougth the Spectram oflers thuch thowe user-available RAM thats is competitors and is is that feature that makes it wo usclital for file-handling, permiating a file approuching 30K in length.

OVER-WRITE

Flexi-File offers a record displayed in a lormated style, to avoid splatting words at line ends, and with the option for a prittout from a $\angle X$ printer if availatble; an editing facility which enables tex to be inserted, deleted, or moved, and individual characters to be over-writes.

I lave found the program especially useful when writing notes of original texi. Instead ar ple contusion of erasing and alterations one associales with a 'paper tile' it has been simple to change the text as needed and then print-out a clean copy via the primer. It is obviously an ideal program for anyone makiang notes for educational purposes, be it a sclacol project, university dissertation, or preparation lor a lecture; the first draft of the various sections can be typed into the rile and edited as required.

Clearly the ZX printer is no use to produce the final copy but al least the screen display offers a clean, tidy and readable draft from which the final version can be typed - no struggling with deciphering your own hastityscribbled handwriting. Or are we, pertaps, already approaching the day when written work will be accepted or computer cassetic?

The only function usually associated with file programs and not available here is a SORT routine bus, given that Flexi-file is designed to hold a relatively small number of
records, that is not a significant disadvantage. If we assume at average record lenglt of 200 words $-1,200$ bytes - the file wilt hold 25 records and it will take the search rousine about one second to locate the stayt of the last record in the file, which should be acceptahle.

So lel us look at the program in action, wheld should enable you to see what personal applications you have for Flexi-File, Having typed-in the program lisling, carefully and eorrectly, enter the following as a direet command:
LET CS - "FLEXI-FILE": IUET fe - 30000: SAVE $\$$ LINE 80 : VERJFY e\$ < enter>

Once the program - about 5.7 K -- SAVEA and VERJFYed, enter GO TO 80 and the menu will appear; the programs is operated primarity from the metu. The BORDER and PAPER are sel 10 bluc and the INK to white, chosen because they seem to be the most pleasing to read. They tatn be changed tasily by altering the appropriate numbers in line 80 but bear in mind that 1here are other colour commands in the program which assume white INK, so beware of producing invisible prompts.

FACILITIES

The facilities offered are to LOAD a file from cassette, SAVE the current file to carsette, list the record names in the current file, change one of those record names, start a new record, or review an existing record. The botton line of the display invites you to lype-in a number, 1 to 6 , or ' n ' to create a new file. So type ' n ' and the sereen will clear and print a warning message, appropriately in red.

That is just a safeguard in case you inadvertently press ' n ' while an existing file is in the computer. Type ' c '

The Likting
 C1， 1010
 DETHIN
40 CLS LU blte bed．PRINT PR FER 2，AT G，LUEE forn：＂＂＂irage The－7．：OOSUU－fe LET c－LEN 3＊

4．LET linewio LLCT col－1E
a）PR1dT AT tine．cal INVERSE UVER 1；＂
4.4 Lu jult IG FRINT AT lane，co 1）INVERSE：\＆1 UVER 1；＂
451510.1 ＂fikl ter＂y＂THEN

45 LET t：ne－line－r 21 ANG line？

 THEN LET l：MEIMT CLEN a

MG［F ：\％＊＂d＂TMEN INPIJT HT 1 ， a，＂Нलи many tharacters？＂ich LE
 4．$\%$ 60 TO 40

31 IF 13＂＂s＂THEN LET atarter asn．दo TU 42
St IF t0－＂f＂THEN LET rintahe posni LET asestsatart TU rimash； LET stonact TU start－1 iasosfinz ＊h＋1 TG ）GO TU HU
gy if ten＂m＂THEN CU TU 5 T．
S4 iF＋＂न＂r＂THEN FPINT AY ！
 GU SUB 10．PRINT 2t LET IBPDON －15．GU TU A2

＊s yrfut AT U，G2＂Entor new tex LINE－＊
 ponsti T＇L，LU TU stu
He EURLGE I PAPER ！INT？ 4 0 SULE ASU FRINT EW，AT $0,16,3001$

 －List．Record Hashes＂＇＂＂4－Lhan ge a Rerord Hame＂t＇lly－jeart n en Recorn＂．．．＂6－Requifus secors
 0 Nem Fila
 ＂N＂THEN LO TO Y8
 TU 61

Yy 60 SLUE 43G FRINT PAPER？？ YAK 2, AT 10,4 ，＂RMY EXISTINL IKF URMATISN＂，AT 12,7 ＂WILL UE LUST LHEN＂，RT 14，3，＂R NEW FILE 15 LRE
 or keva＝Return＂．Lu sLle 1a．3F

 LET FATZ＇PRINT INVERSE 1，AT 10
 30 GEEP ． 3,20 ，LU TA E
 UCE（ $2(n-1)$ RETURN

 OIDE F＊$n-2$ ）＊256）－RETURN

206 inPUT AT 3．0．＂Enter Recora
 a THEH CLS ECO FU 206
205 PRIAT AT 12, ， 4 ＂ 1 II this the
 こ10 LU SUB 10 IF 1EC＂リ＂fNUL 2 －＊＂Y＂THEN LOTO TO 200
 RN

Nos 10 U MEN RETUOH
ATH IF LUCE $53-1 .-$ THEN PCIRT L
 LEN（5F－1）
 39 THEN PRIHT \＆

－23 60 TO \％\％
ThG LET Mlenomlontdiff lot But ？ho．LET re－fetaIff．RETURN
400 INPMT AT 日，0．＂Enter Reocord

LOES IF n＞fe THEH LOK TU tivo
 －THEH RETURN
415 LG jut $j G \mathcal{G}$ LET n＝namien \＆ －TL Acs
420 LL5 PR1NT HT 6,0, MThere snir，Record tiame＂．＇spalt Iake
 NVERSE O．PRINT，AT $12+\mathrm{B}_{+}$Hould you tike a list of the reciord

42340 TU F 6
49G \＆A IGHT © LLS \＆GRIGHT \＆R ETLPN
SGG IF dafCDO THEH LU TO 530
SIt LET bl－gtgre．
315 LET thimbl＋iGag IF bis 子fe TH

 bl＇解 THEN RETURN
$\$ 25$ LU TG 515
3 撸 LET b2＝fe
 THEN LET bIEstart
 bi＜start THEN RETURN
345 60 70 5：35

 SUO CLS PRINT PRFER $-1+3$ 事 $n+1$
 NETLNR

LINE Res IF LEN E＊？TH THEN 1．TG 7019
． 19 RETUR
1090 GU SUR 7QU PR1NT AT 10．22－
 VER＇sE 1 ；F＇T $15, y ; " S T A R F$ THE TAFE＂

2619 60 SUG 4Bit PRINT RT t，\％；＂

REIINE TPPE＂，AT 9，4；＂Press ny key to VERIFY＂，PRUSE is GU 5 UE 450 ．FRINT AT 10.1 ＂＂Un Ermor ＂＂R＂n enter GGTU ziQUG＂，VER1FY
 15．20．日EEP • 25，SG．GO TU EO

3010 LU SLJ 4SG FRIN＇T PAPER 2」 ＊${ }^{\text {害 }}{ }^{\text {＊}}$ ，Record Names

 rlen
 LU TU EGU
 TH建N L L SUG 315 LET IInew （4）TG 3010
JGWU LAG TE 302CO
atta IFiPUT AT 2 ， 1 ，＂Perint－out usn
 ＂Y＂THEN LiPY
Sis 16 RETURH
4200 GU SUE 4DE GU 5UB 4GiJ．PRI NT AJ $2,0,{ }^{16}$ Current nstio is $\quad-14$ ，

 リリーf

 11 HT 3．B；＂Fdit．Formit nted icelatie Ratirn \because＂LaNL
 TH Sine 0
 （1）TU צGए
 1．T1 训川は
 i）TU 61 （1）
 （i）TU GIS
（9061）LU FU $5,0!1)$

 HEN LET b＝n＋rlen－j
 ANL fot $b+1$ 《＞＂＂NNL $k<L_{n-3+r 1}$

 1．LU TO E250
 THEN LO TO G：16
fil Th GU SUE GZUG LET pasiempage＋ 1 なは TU \＆ 160
GONJY 1NPUT AT 1.82 ＂COPY ，LPRI
 NT ${ }^{\circ}$＂ 3草玉＂C＂THEN CUF＂


```
FF!NT ".";家(n+1 TU m+LULE fgeri)
n-y,
G.4SH EETIJPN
```



```
THEHI LEEY b*n+rion-j
```


Th 54 LET startebt 2 Let SUE 306

就 sul

 it LET startmotrlen－i．LET ofrro LEN A GG SUE SSO LET f Satare

 9⿴囗十介贝 C L

 1．＂C土elete this feciord $\mathbf{r}^{\prime \prime}$ GO SU日 14
 G0 TO Tig 2 t
 tactentirlon－a tafl sut＇bad LET f ceferentf LUTH TU
 Filename（e5）：ass that is ued in the IOADing and SAVEing rsutines it canton exweel to charaters in length and the programt relines la atcegte all imailial file bathe－lines 700－710．
the tile atray（tis）is then［yINen． vowd 30，（Wk）chataters long and the bile－ent marker（fe）set at 2．That last variable is used to poirt to lhe end of that pats ot the file alreads used，or in ather words le +1 is the lirst free byle．It is sel initially at 2 because the lirst lwo hyter wl a file hold tre valut का Es．

Once dyain the screan is cleared and the thenu prinled．This sime type － 5 ＇ 10 enter the lïst record．In com mon with most of the routitus in the progran，this single－fine rontine－ lime 5 H（ 0 －thakes extersive use al sub foulinke．The tirst of thase－
 which camot exceed 24 thatracters is kemgh，for rebsems consected wilh the display resutines．Before the matice，（n．5），is acesped it is printed of that al check cam the made sl it spell－ ing．

SPELIIING

Nose of the choices make uxe of lose sub－routine ar line 10，which obviates the need th ux the liNTER key：a repeat facility is avaibable in this sub－ rumtine，on atl keys，hy hulding down the key，but mote that with a SHIFT． ed charater the SHIf T key has to be kept heta down also．Where a Y＇ts： NO reapornse is expected．＇ 5 ＂．YES and all other keys＝N（）．

So，if the record name is spelt correctly，type＇y＇and the record name is accepted，with a control char－ acter dodded at the start of stritge－
line 215 －the（＇ond：of this chatac－ ter represemals the lengtla of the name and is referance will be apparent Iater．

The record name is thens printed at the lop of the wereen an at strip sif red $P A I^{\prime} I R$ ．alomg with the sumber al tree byers in the file．As the recend name las bel sel been placed in the Pilce，its length is not insluded in fe atal so the number displayed at this Hige shesald be 24998 ．＇The sub－tru－ tise an line $3(6)$ is chetl called and you cill bype llec ellliry on to the sereens， the entrs bejng held in a temporary slring（al\＄）．It is displayed or the acreers exattly as it will be feed in tlae file and individual claaracters may the telened by using the DE：ITt：key in Inc asua？way：

TYPE THE ENTRY

A wreenful of texi is the most that that be entered by this routine and when the lengith of as reacless 672 － line 320 －the pregeram blifid？ on inkirem yout of the litet and returns to the main romine in line 5 soon．To return betore as reaches that lengeh type SYMABOt SFIFF／A（STOP）－ line 305．Belore the record is entered inter the life its overald length is calcu－ tated（flen），that being vtored in the lirst two free hytes－line 150 － lolfowed by the record natere（ $\mathrm{n} \$$ ）and the entry \｛aSt．Thas a complete re－ cond comprises the following ele－ mentes：
（COHE byic 1 ） $256+$（COA）E byle 2）＝tual record tengils
f（CODE：byte 3 －length of record náme
（bytes + to x ）$=$ record name
（bytes $y+1$ lo y）－record entry
Finally this routine adds the record lenght is fe and returns to the ment．

To test the program it will be worlh repeating the procedure a few times， sen that all fanctions cen be examined．

END MARKER

Having dome that and having re－ turned to the menu display，type＇ 3 ＇ to list the record nathes．That routine prints a licading．on red J＇Al＇ER，of the filematme，which is presumed to be at leass tive charamers long；if you absicipate shomer file mames add ex－ Ita spatec belwect the quotation marks in line 3010 and then prime－out the record mames alteratalely on blue and black J＇Al＇ER．

If there are more than 20 records lwe lisiling is dimplayed als two pages with all option to send cacla page to the primer．This routine involves the search sub－routine．

Inilially the variable is is set at 5 － line 3000 －which is the subseript of i\＄holling the lengin of the lirst Hatise．After that manac has been priated，n is incrememed by the length of the first record－lines 100 and 3030 －so that it equals the subscript haldiag the second name＇s lengeh，and so on until it exceeds the File－end marker．Thus the time taken to locate any record depends on its position in the file：the time taken to find the＂last record is a product of the number of secords，irrespective of their individual ar combined lengths．

ROUTINE

The routian at line 4000 －Iype＇ 4 ＇ from the memu－may at first glance aplear superflutous after all；the re－ cord name entry sutb－routine gives you a chanee to check that the mame is corsect．That routine is designed to permit a complete change of the name． 1 lirst included il as a result of

storing biographical information about tietional characters; the record name was, ol course, the name of the character and in a lew instances ! wanted to change the name. Depending on your personal applications, this routine may or may wol he tased much.

Given that the new record name will not neecessarily be the satme lenget as the ohd one, is becomes necessary to move block ol the file up or down within W to ereate extra spate or close vatated space. The suth-routine at line 500 performs that function and is entered with the variahle dilf equal to the difference itt lengith of the two names, and start pointing fo the lirst subscript alter the old name. The file is moved in blocks of $1(x)$ bytes and the new name inserted. The record length control shatracters and fe are adjusted accordingly - sub-rotatae 350 - and the menn re-displayed.

The primepal routire al the prograts is lhat entered by typing ' 6 ' from the menn, starting al lime forko, the Review Rowsine. Yosu are asked las INIDUT the tatme al the reeord to be: reviewed and when that has been located in the lile, five options are displayed in the lower part of the screen - Edit, Format, Add, Delete and Return.

The closice is made by INPUTing. is cither Jower- or upper-case, the intiat letter - which appears in INVERSE: VIDEO, line 60t0; at 1he risk of statitg the obvious, when lysirgg-in tle program those letters are preceded by CAPS SHIFT/4 and followed by CAPS SllleT/3. As you would expect ' s ' is used so qual the routine and returns you to the menu.
'E' takes you into the editing facils1y - lines 7000-7050 - and begins by

assigning appropriate values to a and b to create at temporary string, aई, comprising a maximum of 672 characters from the chosen record.

The display has the record name, - page' mimber and number of free bytes as a heading, on red PAPER, followed by the sext beld in as; the editing cursor is primed at the centre of the screen. The cursor effectively inverts the INK and l'APER coblours irs its cersent position and hence stows up ctearly amid a bercen of text.

The editing procedures are contaibed in a strb-coutine starting at line 40. which was inspired by a useful resutine published in Sincluir Projects. Jantaay, 1483. Strictly speaking, as the sub-routine is called only from line 7010 it should have heen incorporated into the tuasin routine but I included to in several programs and have becomse ilectistomed to it being 'GOSUB 40', se did nol holter ther nusuber is for this pasticular use. The main poist is that it does not delsact frons uscfulness of the program.
FORGOTTEN
While in the sub-routine - limes 40 to 57 - in the main rile is lorgoten: all operations work on as. The furctions available are delewed, insert, move, and replace. The eursor is moved by etsing the cursor coniral keys - 5108 - but UNshified. I.ine 46 treats cacti line and columin of the display as if is were a loop; so, for instance, moving the cursor down from the boitom line causes is to reappear on the topmoss line of the same toluman, and vice versa.

That means that it is sometimes quicker to reach a particular character by apparently moving in the opposite direction. That is possibly as clear as mud, in which case I suggest that yot play with the cursor and you will soon see the poinn I am naking.

Having positioned the cursor, cyping 'd' - delete, tine 50 - produces a prompt in the lower screen asking you to INPUT the number of characters to be deteted, the first one being at the cursor position. Atmost instantaneously, the screen is re-displayed with the selected characters removed
from as.
To move a block of text, begin by moving the cursor to the first character of the block and type 's' - start, dine 51 . Then move the cursor to the last character of the block and type 'f' - finish, line 52. As with the delete function, a\$ is re-printed with the block of texi removed. That block is slored as $x \$$ and can be moved to any "page" of any record in the file, or indeed in any other lile.

There is one very imporfant proviso, that neither the block-move nor the insert lunctions should be used again until the block las been reinserted, olherwise it will be lost, From another viewpoilt that can be useful, as move can be atilised elffectively to delete the block ol lext quicker than counting the characters. Tor re-locate the block position the cursor and 1ype 'ss' - line 53 - Ihe block will be inserted immediately before the cursor-position and a\$ reprimed.

To replace an individual character, position the cursor at tlee charater and sype ' r ' - linte 54 ; a spate is primed uver the character and a BIEEP inviles you lo type-in the new one, which is printed into the space and inserted at the appropriale joosition in a\$.

If the key pressed was ' i ', a prompl appears in the lewer screen asking you to rype-in the new text insert ditce 56 - and when ENTER is pressed that will be inserted inmediately before the cursor position as with the block move.
COMPARED
When the editing of a particular *page" is complete type STOP (SYMBOL SHIFT/A). The length of a\$ is then compared to its original length line 7020 - and it it is different the sub-routine as line 500 is called to move the file up or down to accontmodate the new version.

The record conirol characlers and fe are increased or decreased accordingly. The variables a and b are then incremented and the next 'page' of the record displayed.

If during that routine you should delete some lexi by mistake, do not
press STOP. So long as you are still within the sub-routine, only as is being affected; the file (f\$) remains in its original form. Instuad, press CAPSSHIFT/SPACE - BREAK and then enter GO TO 7000 to start the editing function.

PAGE NUMBER

After the final 'page', the main review routine prompt appears in the lower screen. Haviag edited a record you will probably walat to see it formatted, so type 'f'. The format tunction - lines 6100) to 6220 - also prints a heading on red PAPER. comprising the record nante and a page number. Nole that any given record may produce more pages in thas form than in the editisg style, because on average a formatied screen will contain only 620 characters from tie file, as against a full editing stisplay of 672.

Also note that the PRINT' statement in line $6: 00$ assumes that no record will produce more than nise pages; if you think that nay not be the case, change that statement to read - PRINT PAPER 2; TAB $29+($ page <10) :

The record is then displayed one line at a time, each line being thecked to ensure that no words carry-over from one line to the next. Each lime the sereen is filled there is the option to make a hard-copy on the $7 . \mathrm{X}$ printer. Typing 'c' - COPY - does precisely that, printing-out a reproduction of the sereen; 'I' LPRINT - provides a complete printurt of the record but that will be tunformatted. When the whole record has been displayed the main prompt re-appears.

This time, enter 'a' and the singleline routine - 8000 - enables you to enter an addition to an existing record. This screen display is the sante as when starling a new record and the new text is added to the end of the existing entry, for which reason the first character to be lyped shoutd almost certainly be a space, which will save you that portion of editing later.

To enter the text, type STOP (SYMBOL SHIFT/A); this has been
used on a number of occasions where you might have expected ENTER to have been used. I decided against using that key because of its proximity to the space key, which increases the chance of catching it accidentally with potemially-irritating if not disasIrous consequences.

Again, the sub-soutine al line 500 is used to move the file down to make room for the extra text and the appropriate control characters and fe adjusted.

The last function 10 consides is selected by entering "d" - Delete, line $9000+$. That function displays the record name and asks if you wish to delete the record, a saleguard in case "d" was entered in error. Assumaing you do, the file is shiffed up to overwrite the unwanted record and fe decreased by the record length.

If the record was the last one in the file, it just decreases the value of fe and the record will be over-written when a new record is entered. The function returns you direct to the main menu - line 80 - as no more operations are possible on a nonexistent record.

It is probably worth noting the two escape routes. to avoid a state of panic should you feel that you have entered something incorrectly and are about to lose hours of careful typing of valuable information.

BREAK

Whenever the sub-routine at line 10 is being used, lyping CAPS SHIFT/ SPACE, (BREAK), will produce report code L - BREAK in program. This can be especially useful during the editing routines. When a letter or name is being INPUT lyping CAPS SHIFT/6 - cursor down - produces report code \mathbf{H} - STOP in INPUT from which you can enter an appropriate GO TO stalement or examine the file via direct commands.

When a tile has been reviewed fully you will obviously wand to SAVE is on to tape cassette. Mos file programs use a separate array to store record names, which requares you to save the program with each File. That is the main advantage of Flexi-File. By incorporating record names, and
the file-end masker, in the main bile array it becomes possibte to store files separate from the program, with a small saving in the time it takes to LOAD and SAVE any given file.

Typing '2' from the menu selects the single-line routine at line 2000 which, having SAVEd the lile array, BEEPs and prints an appropriate message to prompt you to re-wind the tape to VERTIFY the file. Emmediately prior to SAVEing the lile, the curreas value of fe is inserted into the first iwo byles of f .

There is obviousily no need to SAVE the program. Tis L.OAD a file back inso the computer, 1ype ' 1 ' from the menu display. 'The routine at line 1000 begins by asking yous 10 input the file tame and reluses to acsept one longer than 10 characters; no fije can have been SAVEd with a name longer than that. Once the file is LOADed, Ite appropriate value of fe is calculated from the firss two byles of the file and the ments re-displayed.

APPLICATION

Having tried alt the routines on your lest data, you should have a good jdea of the flexibility and application of the program. Although written for, and so far used only on tape cassette, there is no reason why Flexi-File should not be used with the Microdrive.

Using the EDIT rountine to move a block of text from one file to another is clearly a very slow process with cassetle - possible but nol very practical.
Given the speed of the Microdrive. however, it becomes a potentially very useful function, with up 10 three files on one cartridge. Of course, it will become possible to amend the program to take fuil advantage of the improved facilities offered by the Microdrive.

If, like myself to date, you have not received an order form for the Microdrive and Interface, you can at least stitl make a start on creating useful files with the benefit of lull sextediting and know that they can be transferred to the mass-storage system when they are available.

Build your own Sinclair Special ZX-81 Kit Offer ONLY £25 (plus p\&p)

A special offer open to readers of Sinclair Projects has been negotiated which means you can buy the world-beating ZX-81 for just $£ 25$ (plus post and packing).
Stocks are limited, so be sure to place your order soon. Allow 28 days for delivery. Maximum four units per applicant.

The kit is available by mail order only. No callers please.
The prices apply to United Kingdom only. Overseas orders cath be accepted but there will be an extra postal charge. The full price can be obtained on application to

ECC Publications at the address on the coupon.

[^2]
AGF PROGRAMMABLE INTEKFACE

Kecominised as the anly true tlardware ftogrommed jaysitich interface this product

You can use ony Alari-compatible joyatick controller with any suftware for your Sincmir specirum or 2×81, ant fost theme with a joystick uptiolt.
Movement of the joystick is recognised by the compliter exateffy the same an prositing the appropriate conlrot keyb, and son thetethare give the most immediate response to that movernent, the hardware arogsismmed desikn works with aff poasible key-reating me1htess, both BASIC and Machine Code.
Hight directional movement, with or withont the firc button being presised, ein be achieved by only programming the lefl, fitht, wp. down and fire kers required by
the game, the grame.
Jtogramming bechioved by a Iwo-digit code, which in looked up on the Programming Chasl suppled, for each direction and firins button. These Iwo numbers are then sei octed on a pais of leada which are clipped onto appropriately numbered stripo on the interface.
Once configured thia can be marked onlo: Qusick Roferente Frogramming Card for sloring with the gante. As the peggrammint in mot paws dependent the interfice can D. immedialely used when neil mwisthed on
The keybonrd fromaina fully functional and can by used simultenepurly with the joy-
An intogral rear enpanation connector manan there 15 tio need to renowe the interfecen 1 conaect other peripherals.
NB. A tecent desizn imptrivement now means thas the AG'F Programmatile laterlace works with like new Quickshot it repid works winh live ne

- Programaiable deolop dives TOTAL sofl ware support,
- Accopts Aleri, Competition Pro, Wico Starlighter, Quick Shot, Le Sthek eft.
- Rear extenxion comnactor for all other mdronz
* Finte dema prograna and imetruclions

PACKARAF (UNTENTS SUPPIIIT)

- Programmable Interface Module ax illus trated, complete wilh clip-an prepram ming Jeads
- Self adhusive porgramming churt detailing tuw to define which key is vimulated by

- Ore pack of ten (Yuck Hoference Pro-
 to your games requiretuents.

- 12 months gumuntec ind full written anes
$=-8=0$
 THMr

FROM: MR/MAS/MISS

ADDRESS

SEND C.W.O. (NO STAMP NEEDED) TO: A.G.F. HAROWARE, DEPT.SU FREEPOST, BOGNOR REGIS, WEST SUSSEX, PO22 9BR.

QTY	ITEM		
	PROGRAMMABLE INTERFAC	ITEM PRICE	TOTAL
	JOYSTICK(S)	27.95	
	WOYSTICK(S)	17.95	
2X81 \square 2X SPECTRUM \square Please tickDEALER ENQUIRIES WEICOME EXPORT PRICES ON APPLICATTON		1.00	
		FINAL TOTAL	

JOYSTICK Spectroum/

ABOITT OUR JOVSTICK INTE, RFACE
Following in the footsteps of pur extremely popular urigitial interiace, which heo sold bver 1,000 worldwide since Octoher lat year, we have improwed its performance.
The Interface Module II has been speciaily designed to pluy on to the rear cannector
 you to connect my standmed Atari type ligital loysticita. Nll of the computer's connections are duplicated in an exfension cesnnectior ion that you cen still uto any other devices istended for use with your computer, The Inferface Mordule tI residies in the sme meonory ${ }^{2}$ pice ss the keyboard, which remains fully functional at all time, thesefore it will not interfere with moything olno connetted.
When tufiable joystick in pluted info 'Payer 1^{\prime} wocket it action will milme preswing the cwror keys, up "? ") Iefl " 5 " and so on. The firing bution will simulate key ϕ. A second Joybitick may be connseled in the -Ptayer 2^{\prime} position which stmulates in 1 peratel fashion keyn T-Y-U-I-P.
Using jayatick control in your own programa it as may my rendtnt knyk. Eigh1 directiona and Fire met whent by aimple BASIC!

- Prowea curoor key amulation bor maximan woflwase support
- Acpepts Atari, Competition Pro, Wico, Stapfithter, Le Stick, ofr Joystictos
- Second Joytitick fecility
- Rest extersion comenector for atloller Edd-oms

AGF COMPAJIBLE SOFTWARE -
AVAILAHII: NAIIONWIDF
the following titles are avmikable from us:
Calactic Jeilbreakf : Apocolypae
Singhe Jank

393 Janx : ©K 'Jronits
$t 4.95$
Splat!
Preenix
Eierape
31) Tunted

Khat in 30 Incentive 14.95 Soltwate Lid 55.50 Mepadodo Software E5.50 New Generation Sortware $\begin{array}{r}54.95 \\ \hline 1.95 \\ \hline\end{array}$
Cyiver Rats :Silvenall $\quad 55.95$
COMPATTBLIITY CASSETTES 14.95
These casselics likve short puezrama to toad before 1te ehosen game which will contan it to une the cursor keys and there. fore become compatiole with the tintorface Madule it.
Comette isomortir Counete 2 converts
Arestifa C'entipede
Schizalds
Tlanctioids
Hungry Hornce
Horace (iones Sinume
Spectres
Jet-rac:
Paneltalor
Plase
31) Combas Zone

Inveders
\& Will reguine 4 AX Memory

Whiser 10 BUY AcF FRODUCTS OVER THE COUNIER

Athby Compotior Cente
186 Ashtiy Aifb Sireet, Scunthorpo, S. Humberside 1 NN 16218

Brinwave Microcompmeters
24 Cruwn Street, Ipawich, Suffolk TPI 3LD Boffer Mieno L.tl
310 Sitreatham High Kond, Lomion SWI6 Cheleses Micros I.ed
14 Jerdan Hace, Landon SWG I BH Computers of Wigmone Street
g7 W\%more Strecs, London WIH 9FA Eveny bodyz thobbies
1 Greal Colman Street, Ipswich,
Suffoli IP4 2AA

4Mat Compution
 \section*{Screems}

67 triargate, Pretion, Lancmathire PRI ZAT Gant:
24 Cinnucester Rond, Brithton BNI 4AO Gr Microland
7 Ouecns Parsde, London Rond, Waleziouville, Hidits
Meltrity H-Tech Led
49 Rimad Street, Herelord HRS 9AR
AV hmad Street, Herelord HR4 9AR
296 Ciloucester Rowd, Horfield, Mristol Revin Vides
34 Green Lane, Tettemhall, Wolvorhampton
Screen Scent
144 Si Geocere's Roed, Cloltemtinne clomentantipe GL50 3EL.

6 Main Avense, Moor Park, Northwood Middlerea.
Sy les Comapaten
76 cornwall Sireet, Plysouth PL1 1 NS Teleco Video
$\$ 3$ Mapte Romb, Penge, Lumtan SE20
Tolford Electronics \& Compationg
26a Hadford Street, Shipnil,
Shropahire TFis BAU
The Computer Shop
Unit 25. Ifondyside Arcude, Porcy street, Nowcastle-upan-Tyne NEI 4FZ
The Corrpstar Centse (t Uumberide) Ld 26 Antaby Road, Hull HU1 2PA

FROM: MR/MRS/WISS

ADDRESS

SEND C.W.O. (NO STAMP NEEDED) TO: A.G.F. HARDWARE, DEPT.SU.
FREEPOST, BOGNOR REGIS, WEST SUSSEX, PO22 9BR

Many people want to connect their machines to a better printer than that supplied by Sinclair. Richard Sargent explains the design of a one-chip interface which has extra facilitias.

SPECTRUM OWNERS who would like to attach their machines to a printer other than a Sinclair fave a choice of commercial interfaces but they are somewhat expensive, If you are intending to make occasional use of a cluh printer, $\mathbf{5 4 0}$ to E50 is a great deal to tie up in a printer interface. Alternatively, it you are about to buy a printer, $£ 50$ is a nasty hidden extra, somewhat worse 1 than VAT. The answer, of course, is to do it yourself, at a cost of less than 110.

The easitsil printer interface to make is one which sends eight bits at a lime, in parallet, direct to the printer. There is a siandard set for it called the Centronics slandard, where voltages, signals and pin numbers are all specilied. Figure three shows the connections on the Amphenel-type plug which usually is used to plug into the printer. Figure Iwo shows the minimum number of signals which must be exchanged between printer and computer.

The chip chosen to communicale with the primer is the $2-80$ parallel imput/output pori chip, known as the 7.80AP1O. You will need to obrain the version with the " \mathbf{N} ", since that is the high-speed version. There are many clever things the chip can do
and the technical manual published by Zilog is well worth having if you think you are likely to experiment using the chip.

For our purposes, however, it is its ability to connect to the Spectrum bus with no decoding chips and its ability - on the A port lines - 10 have some bits configured as inpuls and other bits configured as oulpuls, which makes it such an attractive chip. liggure three shows the connections, with the dashed section being optional.

The prototype was squeczed on to a piece of Veroborard 10 cm . by 3.5 cm . which did not leave nuch room for the wiring. The board should not be bigger than 10 cm . by 6.5 cm ., or it wild not fit into its neat casselte tape box. The cassette box not only looks neal but protects the circuitry and provides a convenient place for the operating instructions - on the inside of the clear plastic.
figure four shows the general methed of construction. The edge connector should stick ont as much as possible, as that permits air to continue to flow from the back of the Spectrum, helping to cool it. A wiring diagramt is not relevant - you should list all the connections you need to make and cross cach from the list when you have soldered it, double-
checking as you go that you have wired to the correct pin.

For the cable to the printer 1 used 12 -core flexible cable; that is easy to anchor inside the cassette box but ribbon cable would be equally suitable.

When Sinclair Basic does I.PRINT and I.L.IST it First checks a location in RAM to find the address of a routine in ROM which it will use. That address is 15 bytes after a starting address given by the contents of CHANS. 11 will move around depending on how many Microdrives are rilted but CHANS is always at 23631. Normally the two bytes of RAM contain 09 F 4 H but they must be changed to FE E BOH for the Centronics I.IPRINT and I.I.IST to work.
NEW and USR 0 both sel them back to 09 F 4 H . That setting-up procedure can be done from Basic, or automatically by PRINT USR 64512. COPY can be achieved only by RANDOMIZE USR 64986, and should not be attempled via the Spectrum COPY key.

The code rides in high memory and is about 700(d) bytes long. Since it is assembled for a 48 K Spectrum, 16 K owners will have to subiract 8000 H from all the absolute jumps and calls. So CALI PRINTER CDA3FD be-

comes CDA 370 . Five other adjustments from FD to 71) are also required, at FD8C, FDD36, FFD3A, FID60, FD67. Those bytes reference lables.

If space is at a premium only the last $305\{d\}$ bytes of code reed be entered. That wilt give the COPY, L.IRINT and LLIST but all Spectrum graphics will he printed as spaces and the width of print will be the maximum the prister allows - usually 80 characters. If you can enter only this ainimum system, which starts it

FDA3H, you must change all four CALL OUTBYTE (CDFFFC) to CAILL PRINTIT (CDCCFD), All the byles down memory of JDDA3 give the printer routine a few more facilities.

Many dot matrix printers will tsutput block graphics, though they probably will not have the same codes as the Spectrum graphics. If you patchin the routine CHINKY, the Spectrum graplices codes 128 -143 will be changed into the codes required 10 oltiput the stnall shape of a graphic block on an Epson 80 printer. The
rouline merely looks up the new code in the table NW so if you have a printer with different codes for the various shapes of graplics, all you seed is your own table of codes at NW.
The difficuly with having userdelined graphics and block graphics printed as spaces is that you ought to draw them by hand later. Patch-in the routine NUMBER and they will be printed as their decimal code equivalena, brackeled neatly.

If you wish the print width to be less than the maximum specilied by the printer in use, the byte 64753 must be POKFID to non-rero and the width, in characters, POKED into 64754.

The hexadecimal dump is not a patch but an extra routine - Iwo routines, in fact. Any area of memory will be sent to the printer from a specified starting address - POKE f46644/5 with the starl - 10 a specified end address - POKE 64666/7 with the finish.

With 64754 set to widit 48, RAN. DOMIZE USR 64668 prints a hexadecinzal dump. RANDOMIZE USR 64672 prinis the bytes as ASCII but no check is made for control characlers and is is recommended that you

The Veruheard is held in place fy Iwa screws, one of which anchors the cable. The edereconnectof is offiet to the right, si thas lime umil, once fitted, does not interfere with the power supply secket of the \$pectrus. Yole that the eopper dde of the Verohnard faces the spectrum key hourd.

do not operate this printout unless you are sure your are printing a valid ASCII file.

The copy routine at FDDAH works by printing sach pixet dot of the Spectrum screen as a single dot on the printer paper. A gond deal of bitmanipulation is nevessary to change the tormal of bits on the sereen into the form required by the printer. The maximum size of primoul obtainable from the Epson MX70/80/100 series printers is 11 cm . wide, 6 m . deep. The width, but not the depih, can be halved by changing the byte at FESOH from 4B to 4C. Doubling the $5.5 \times 6 \mathrm{~cm}$. image by a software routine would then give Ilam. by 12 cm . - interesting but distored.

The new Epyon RX80 printer has a Braphics printout, CRT1, which prints normally as 7.5 cm , wide by 6 cm . deep and is capable of being doubled by soliware to $16 \times 12 \mathrm{~cm}$. To do that the routine DOUBLEE at FC2SH is patched into the main eopy
routine al location FE2EIf. Further bit manjpuation is carried-out to prim four dots on the papter for every single pixel dot on the screen.
The code may be entered using a hex-loader, and working through the code shown in figure one. If you have an assembler, you should enter the source code and customise the program to suit your requirements.

Finally there is the matter of the six spase perts on the PIO chip. They exist, so why not use them? Five have been configured as inputs, so they could be North, South, East, West and fire signals from a switch-1ype joystick. They would not, however, be compatible with any commercial software.

There is another rather more intriguing possibility - to use them to conmmunicate with another computer. In many schools the Research Machines $380-2$ operases in close proximity to a Spectrum. Often the 380-Z can send only seven biss of paralle!
data to its printer and therefore cannot print-out graphics. Linking a $380-$ Z to a Spectrum could not only let the $380-\mathrm{Z}$ print out its graphics but could, with a small amount of software, allow the Spectrum to act as a printer buffer, printing 32 K of $380-\mathrm{Z}$ data while the $380-7$. was engaged in more produclive sasks.

The intended link is one-way only, $380-Z$ to Spectrum. The PIO chip is configured ready for the link and the hardware requirement is merely the wiring of a Cannon D-type plug, as shown in the wiring diagram.

Itwo short machine code routines are needed, one for each machine, and the source listings are given. Time las not allowed me to lest the code for the $380-Z$ part ol the link but I have a similar link running successfully beiween a Nascom 2 and a Specirum. It may be an expensive way to link a Spectrum but for the cost of a piece of cable and a D plug, it is certainly an interesting experiment.
 160 of the \$pectrum manual.

SAMPLE PRINTOUTS

A COPY of a screen listlag．

A thex dump－line width now sel to 43 d ．

F3	$A F$	11	$F F$	$F F$	$C 3$	$C B$	11	$2 A$	$5 D$	$5 C$	22	$5 F$	$5 C$	$1 日$	43
$C 3$	$F 2$	15	$F F$	$2 A$	$5 D$	$5 C$	$7 E$	$C D$	$7 D$	00	$D 0$				
$C D$	74	00	$1 B$	$F 7$	$F F$	$F F$	$F F$	$C 3$	$5 B$	33	$F F$				
$C S$	$2 A$	61	$5 C$	$E 5$	$C 3$	QE	16	$F 5$	$E 5$	$2 A$	78	$5 C$	23	22	$7 B$

（iraphics printed ats their code numbers．
［129］［130］［131］［132］［133］［134］［135］［12日］［142］［14 1］［140］［139］［13日］［137］［136］［143］I144］［145］［146］［ $1473[148][149][150][1513[1523[153][154][155][156$ ］［157］［15日］［159］［160］［161］［162］［163］［164］
AS COPY of asereen lisl，In RX


```
CDIA S*WW
FDAC
```



```
M, CP OOH 
F0%4 5%24JP
FD27 %0
```



```
C0:%
FD28
8D:%
4D2F
```



```
FDza t17mo
GD:% Bo\yediru
CD:| H:F
```



```
104: Coki! (1F%)
```



```
&D9:, 1 b4z;
```



```
M0.4A cx%
F⿰口⿰亻⿱丶⿻工二⿺卜丿,
FD4C Db2%
M04% Doz
M Mi=2 & %
MDA, &17,
N-5%
- D',4 पF %atr
```



```
1 vesp I :1
```



```
1 DEA AA,a| D
$063 l:C4 514
```



```
            1D L,A
            LD MA ,Kam
            ID IV,Sum
            -D C, (2X*O)
            AP| IN, EC
            ID imET,
            MNar: i%
            TaN: IV
            1+5. bl
            NH. N% &F
            coutput tonde summamp an IIm,y
            CAMI Guthy%t
            cisacmatm
            c:m.t f(%)MevTI
            I# A, (tenH2')
            CNL! imatNay'!
            1MC HR
            0% or, (lanmp,
            CN.I EXITEYH
            & DSN, -3,1%:O
            - coll
            #Mald
```



```
            #6:
            ! bry -...
```



```
            CD%/
            IE=1
            F日Y!:
                    Gy%C
                    FON:
                    FON:
                    FDTC
FDN:
B70, & &MO
```



```
FDW: FEGO
FD#: FEpo 
FDa*
FD日%,
F0A, 1600
FDen
0.Dift -T
*DEE 19
FDAF il
FD*O
FDFO
```



```
INYG AHAM\omega&SM,
FDFH ACA&ADOF
*H%S5
%yas
\0%ay
OM,
```



```
v1as
01A3
H1AS
linay
M1AA:
Monez
Mny/ (H)
M,
O-\cdotsF%
MOMF
FDE, COHFIN TUSH NF
```


J. M
L. A , D
CNLL PRINTER ior Int rwaula
CAAT PMINTEF tiwne

Fizure 1 HEX \#H:MP

Program 2n

```
;380Z TO SPECTRUM ONE-WAY LINK, TO CONNECT
;WITH THE PARALLEL PRINTER INTEFFACE
#R SARGENT July 1983
```

P_A_DATA ERU IFH
PRINTIT EQU OFDAOH ;64B96d (4BK Spectrum)
; or 7D80H 3212日d (16K Spectrum)
FID EQU OFDGFH ; 64879d
; or 7D6FH 32111
; Deduct 32768 to achieve addresses
; for the 18K Spectrum
; Don't forget to adjust the CALLs

F3	L3902	DI	；Interrupt off
CDAFFD		CALL FIO	；Set PIO
CD		CALL S＿N＿RDY	；Send＂Not ready＂
O1FEF7		LD BC， 6.3486	
ED7日	WA I T＿60	IN A ，（C）	；Start when
CB47		EIT O，A	；key＂I＂is
$20 F A$		JR NZ WAIT＿GD	；pressed
CD	MLOAF	CALL G＿DATA	；Get 4 bits
CD		CAL．L S＿N＿RDY	；Not ready
$4 F$		LD C，A	；because
CE39		SRL C	；the
CE39		SRL C	；bits
CE39		SRL．C	；are being
CB39		SRL C	sshifted
ЗE80		LD A，日OH	
3D	DEL	DEC A	；Del ay
20FD		JF NZ DEL	
CD		CALL G＿DATA	\＃Next 4 bits
E6FO		AND OFOH	；merged with
B1		OR C	；first 4
CD		CALL S＿N＿RDY	；Not ready
CDEOFD		CALL PRINTIT	；Print 日 bits
180 E		JF MLIODP	；go round again
3EO2	－＿DATA	LD A，2；00000010	；Send a
D31F		OUT（P＿A＿DATA），A	；＂ready＂sígnal
O1FEEF		LD BC， 61438	
DB1F	STR	IN A，（P＇A＿DATA）	；Read 5 bits until
57		LD D，A	
ED78		IN A，（C）	；Check if＂O＂
C847		BIT O，A	\％key pressed
2805		JR Z ABORT	
CB5A		BIT 3 ，D	；strabe received
20F3		JR NZ STR	；then exit with
C9		RET	¢4 bits vali

Prognma 2b
; 3 BOL TRANSMIT TO SPECTRUM USING 7 EIT
II/G FORT E BITS OF DATA SENT AS
; TWD GEFARATE NIBELES ** FFROVISIONAL **

BRG 1000 H
; LOAD WHERE-EVER

$F 5$	ENTFY	PUSH AF	
F5		FUSH AF	
CD_{2}		CALL CENTRON	; Send low ribble
AF		XOR A	
3 D	DY	DEC A	; Del ay
20FD		JR NZ DY	
F 1		FOF AF	
1F		RRA	; Shift
$1 F$		FRA	; high
1 F		RRAA	;nibble
$1 F$		FRA	; and
CD		CALL CENTRON	; send it
AF		XOR A	
$\therefore \mathrm{B}$	DEY	DEC A	; Del ay
2OFD		JR NZ DDY	
$F 1$		PUF AF	
C		RET	
AF	FEELEASE	XJF: A	; Continue
CO		CAIL ENTRY	; sending
F71E		DE EMT, KEDTC	;ftils to spectrum
FESO		CF* "O"	;untili stopped by
20F6		JR NZ FELEASE	; the "0" ley
F7\%		DE EMT, O	; Return to Command

Stephen Rush manipulates strings to perform mathematical functions

ONI: OF the problens with the Spectrum, and most other home computers when used for accountancy, asironomy and the tike where numbers have to be very precise, is that the Speetrum will disghay mumbers omly to eight digits after which enther it will ignore the rest of the number - if the number is between $10+8$ and 1016 - or it follows the number with al leter E: and the power of 10 .

That unfortunately is often insufficient whers performing very complex calkutations. Alsur cecasionatly, il not very olten, numbers bigger than $10 \dagger 38$ or less than $10 \dagger$ - 38 are re. quired and they nut only cannot be hold to any real accuracy bul also cause the Spectrum in stop with an error report, Jeaving you to lind another way of finishing the problem.

SLICING

The casiest way to circumvent those problems is to use string variables to hold the numbers - they will hold the numbers to any amount of places without the Spectrum trying to change them for you - and manipulate those strings, using the excellent siring-slicing capabilities, to perform the four major mathematical operations.

To get down to the programming, please note that the first four subroutines are only to demonstrate the basics and so to make them casier to understand they will work only with positive integers - i.e., no negative numbers and no decimal points but the final program which contains adapted versions of the programs also contains other routines which allow the user to enter both decimals and negative numbers.

The most obvious and probably easiest program is a simple addition prograte which will add two strings and leave the answer in a third string. Note that if you enter the multiply program you will need to have this addition routine in the computer as it is an integral past of the multiply procedure.

If you look at figute one you will see that the routine is based on a simple loop which looks al sucecessive clements of each string, adds them, and puts the answer in a third string. The main lines of interest are:
I.ine 1080, which sets the variable Z to the value of the "Fith cicment of the shorter string, after first thecking that the sirimg is long enough to allow it.

DIVIDES

Line 1090 adds the " f 'th element of the tonger string to Z, adds any remainder from the tast sun through the loop and then divides the answer by 10.

Figure t. Add.

$1000 \mathrm{Rt} \cdot \mathrm{M}$ Alm

"'scund No.".ss
J020 I ET T $\$$.. ${ }^{+\cdots *}$: I.ET R R - 0
10301.1:TCS "0", FS: I.1:才

135 ${ }^{20} 0$ " +58
tose If tI:N SS 3 LEN IS THE:N LNT
(S " 0 ". SS : IF:I DS " 0 " 1 FS IOGO EOKR FOTO LENCS I
$1070 \mathrm{IEJ} \%$ 自
HOWO If HEN DS 2 N 1 , 1 THEN LET
Z = VAI DS (IEN DSS - F)
1090 LFT R (VAI.(1.EM
C5 (F$) \mathrm{J}+\mathrm{R}+\mathrm{Z}) / 10$
1100 ILET TS - STRS ($(R$-INT
R) ${ }^{*}(0)+75$

IITO IEET R - INT R
1120 Nt :XT I
I 140 PRINT TS

Line 1100 puts the decimal part the part after the decimal point - of the number, which corresponds to the units, on to the total (T\$) as the next digit of the final answer.
line 1110 removes the decimal part of the number, the unats, lhus leaving \mathbf{R} as the remainder from the addition.

This routine, although not fast, will add two numbers each 50 digits long in less than 10 seconds, which should not cause too much distress even i Γ you want to add two very large numbers.

The nexi routine will subiract one string from another, though as we are stilf dealing only in positive numbers this routise will find Ite dilferenee between the two numbers. If you want the routine 10 do a proper subtraction, you should add a line 640 to read:
IF SS $>$ FS THEN LUET TS .. ** - " + T\$ to the program ligure swo.

If you look at the subtraction rouline in figure two you will see that, like the addition routine, it is based on a short loop but unfortunately this one is a little more complicated, so ! will make its explanation a litle more detailed.

COMPARING

Lines 530 and 540 are a simple is rather clumsy way of making boith strings the same length by adding "0"s to the beginning of the shorter string.

Lines 560 and 570 set As to the larger number and BS to the smaller number.

Beginners should note that when comparing strings the computer does not compare the values of the strings but instead checks on the codes of the
first element of each string - or successive elements if the first elements are the same - and the string which begins with the character with the higher code - see appendix A of the Spectrum manual -- is the higher string.
Fortunately as the codes of the numbers are stored in numerical or der - i.c., the code of " 2 " is larger than the code of "1" - this has the same effect as comparing the values of the sirings. Unforiunately, however, if the strings are of different lengths you may arrive at the incorrect answer.
For example, if the computer compares the two strings " 9 " and " 800 ", the computer will give the answer thal " 9 " is larger, which is not the correct answer in this instance. To prevent that " 0 "s have been added to make the strings the same length. So the example changes to "009" and " 800 " which gives the answer required, i.e., that " 800 " is larger.

NEXT DIGIT

Line 600 checks if the subtraction is to need a carry from the next digit.
l.ine 610 does the subtraction $-\mathbf{R}$ is the 'carry' if it is needed and $\boldsymbol{R} \mathbf{I}$ is the carry from the last suburaction if there was one - and leaves the result as the next digit of the final answer.
line 620 then sets R1 to the number which has to be carried forward

500 REM SUBTRACT
$\$ 10$ INPUT "Fircy No,".FS."'Second Nu.".SS

530 IF I.EN FS $>$ L.EN S $\$$ THEN I.ETT

540 IF IEN SS \rightarrow IFN ES THEN LET
FS. "0" + FS: (C)J) 540
550 LET RI = 0
560 LE:T AS $={ }^{4} 0{ }^{\prime \prime}+$, 3 : LET
B5 " 0 '" + F3

: L.ET H5 "0" + SS
580 IORR $F=$ LEN ASTO 1 STEP $=1$
S50 LET $R=0$
600 II: (VAL B $\mathrm{B}(\mathrm{F}$) + R1) $>$ VAI. AS (F)
THEN I.ET R .- 10
GIO ILET TS -STRS (OVAI

620 LET RI - INT (R/I0)
630 NEXT F
650 PRINT TS
for the next time round the loop.
The program will find the difference between two numbers each 50 digits long in about 10 seconds.

The next program will multiply two strings by long multiplication. Figure three will show that the program is based on two small loops, one inside the other. The outside loop goes through one of the strings, one clement at a lime, and the inside loop multiplies that number by each element of the second loop in turn. Note that to use the multiplication routine you must have the addition rouline in the computer or the multiplication program will not work.
line 140 sets the remainder (R) to zero and sets the subtotal ($/ \mathbf{K}$) to the empty string.
I.ine 160 mulliplies the correct clements of the strings and adds any remainder from the last multiplication.

Line 170 puts the units part of the catculation on to $\mathbf{7 \$}$ as the next digit of the subtotal.

Line 180 calculates the remainder to be carried forward and puts the remainder in the variable \mathbf{R}.
lines 200 and 210 add " 0 "'s to the subtolal and then send the subtotal and the current tolal to be added using the addition routine.

PURPOSE

For those who do not see the reason for doing this, here is a small example of a long multiplication:
if you want to multipiy $\mathbf{1 2 , 6 5 4}$ 12.654 by 124,
you Гirst multiply 12.654 hy 4 giving 30,616
then you multiply 12.654 by 2 ated add a "0"

253,080
then multiply in by 1 and add
"00" giving
1.265 .400
and then to get the final answer you
add these three subtotals giving
$1,569,056$
That is, in effect, the purpose of lines 200 and 210 , as they add "0"'s and then send the strings to be added. The only difference is that those lines add the subtotals after each is calculated rather than waiting to the end and then adding them all.

If you wish to multiply two numbers each 50 digits long, unfortu-

Fignure 3. Meltiply.
9月 REM To use this program you musf have the addition routine in the computer 100 REM MUITJPI.Y
I 10 INPUT "Hirst No.", I-5, "Second Ne.",SS
I20 LIET T\$ **. LETT B\$: S\$: LET $\mathrm{A} 5={ }^{+} 0^{n}+\mathrm{P}$ S

150 FOR IF - IFN AS TO 1 STEP - I
160 E.ET A = (VAI. B\$($\left.{ }^{(}\right)^{\circ}$ VAL. AS
$(F)\}+R$
170 t.FTT 7.5 - STRSE(IA/I0) - (INT(A/
$101)^{\circ} 103$ + $/ 8$
180 ILET R INT (A/IO)
190 NHEX Fi
200 HOR H-1 TO IFFN ES G : IFT

2101.1 II 15- 25 : ILIT S\$ - 15 : GOSUB

1020
220 NHET G
250 PRINT TS
$260 \mathrm{SI}^{2} \mathrm{Ol}^{3}$
1130 RETURN
nately this routine widl take almost $12 \frac{1}{2}$ minutes to arrive al the answer because to do the calculation requires:

A loop of 1 to 50 multipyling each digit by one digit from the other string; a loop of up 1011050 adding " 0 "'s to the subiotal; a loop of beIween I to 50 and I to 100 to add the total and the subtotal.

To complete the sum it will have to go through the process 50 times, which unfortunately takes a long time to complete. For many applications the answer is well worth the wait for the accuracy alone but you should also note that the biggest number the Spectrum can normally handle without stopping with an error is casily surpassed by multiplying iwo numbers each only 20 digits long.

DENOMINATOR

The next routine is slightly limited in that the number by which you are dividing - the denominator - may be only eight digits long and unfortunately that applies to the main program as well as the short routine. If anyone knows of a way of circumventing this, I would love to know how.

The number into which you are dividing - the numerator - can be as long as needed and you also have

the option of choosing to how many places you want the answer worked.

What is probably a much bigger blow to people who will not bother to type-in the main program but want to see the division routine in action is that we are still dealing only in integers and consequently the answer will be a string of numbers and you will have to find where to put the decimal point - i.c., " 10 "1 divided by " 40 " will give the answer " 0025 " instead of "0.25".

If you look at figure four you will wee that the routine is very short and the only lines of interest are those between 1565 and 1590 .

DECIMAL

The casiest way to describe the tasks of those lines is to show an example of a long division next to a deseription of how the computer does the calculation. For example, if you wanted to divide 9,714 by 12 to live places, in practice you would IPRINT 9714/12 but showing an example to 20 places would take too much room and would also put my one typing finger out of action for the rest of the week. The calculation would be:

1400	Action	Tlw divtulow
		08095
1510	Sens IS 10 " 49714 " and SS to " 12 ".	1299714
1565	Sers $\% 109$.	9
1586	tivitles 9 by 12 and puts the answer (O) on the total.	
1596	Cabubates the remainder (9).	
1565	'trings the 7 down'.	97
1570	Sets \mathbf{R} to the number formusd (97).	
1580	Divides 97 by 12 and puts the answer (8) oll the lofal.	$\begin{aligned} & 97 \\ & \left(1 Z^{\circ} \mathrm{B}\right) \end{aligned}$
15\% 0	finds the remainder (i).	1
1565	*Brings the I down*.	11
1570	Sets R to the sumber Formed (11).	
t590	Ilividen II by 12 and puts the answer (D) on the totat.	${ }_{\left(12^{*} 0\right)}$
1591	Frinds the remainder (11).	11
1565	'Brings the 4 down'.	114
1570	Sets \mathbf{R} to the number formed (1t4).	
15 P00	Divides 114 by 12 and prats the answer (9) on the intal.	114 $\left(12^{\circ} 9\right)$
1590	Finds the remainder (6).	6
1565	Finds that F S is ton short so it 'brings down a 0 down'.	60
1570	Sets \mathbb{R} to the number formed (60).	

1580 IJivides 60 by 12 and pats the answer (5) on the loㅕㅇㅣ.
1620 Arrives at the firal answes
0809:
As you can sec, the decimal point still needs to be placed and the easiest way of doing it is to PRINT VAI. FS/ VAL S\$, which will give an approximate value which should help you to place the point. This routine will do a division to 1,000 places in about three minutes.

As you have probably already said to yourselves, the routines are almost useless on their own as much of the calculations you will want to do involves negative numbers and/or numbers with decimal poins.

To citcumvent those problems requires iwo more routines. The first lines 9500 to 9550 of the mait program, figure five - scarches the two strings - IS and SS - to find any decimal points. When it linds a decimal point it removes is and remernbers from where in the string it came. The routine sets UPI to the number of digits after the decimal point in FS and OP2 to the number of digits after the decimal point in Ss.

The other routine, from 9650 to line 9600 , checks if the first character of 1 S or $\mathrm{S} \$$ is a negative sign; the variable NEG: is see to 0 is both numbers are positive, to I if the first is megative and the second positive, to 2 if the first is positive and the second negative, and to 3 if both numbers are ncgative.

CHECKING

The final routine, though not very important, is very useful in tidying

Firare 4. Divide.

1500 REM I3VIISt:

1510 INPUT "Firsis No, ", F\$, "Sectond No.".S5
1520 INPUT "No. of places".AP 1530 I.ETT TS
1550 I.ET R - 0
ISGIVORF I TO P
IS6S I.IT\%-0:IF LEN IS $>$ F THEN
LET Z VAI. IF (\mathbb{F})
1570 LES R - R•10+Z
1580 INT IS - IJ + STRF (INTIR/VAI. S5)
1590 TET R \mathbb{R}-(5NTIVAI. TצC(EAN
T\$) ${ }^{\circ}$ VAI. S $\$$)
$16 \not 10$ NEXT F
1620 PRINT T\$
the answers; its job is to remove the trailing and preceding zeros which make the answers look ugly. The irsportant lines of this Final routine are:
L.ine 9930 removes preceding zeros from the variable T\$.
1.ine 9920 returns if the number has been reduced to " 0 ".

Line 9940 is a complicated line which does a fairly simple job; its task is to search the string for a decimal point; if it finds a point it continues with line 9950 but if the string does not contain a decimal point it will return, after first checking whether the string should be negative. This tine prevents the rest of the routine removing zeros from a number greater than I as they do not need the reros removing, e.g., you do not want the zeros removed from 9500.
line 9965 will then replace a zero before the number if il starts with a decimal point - i.e., ". 45 " will be changed to " 0.45 ". The resulis from the first two routines are used in the following ways:

For adding, if the first number is positive and the second negative, line 7520 sends the strings to be subtracted. IT, however, the lirst number is negative and the second positive, line 7530 swaps FS and S\$ and also swaps DP1 and DP2 before sending them to be subtracted.

Lines 7560 and 7565 ensure that both numbers have the same number of decimal places by adding "0"s to the string with fewer places after the point.
I.ine 7670 finds the position of the point in the final answer. When you add Iwo numbers each with x digits after the point the answer wilt also have x digits after the point and wilt also make the answer ncgative if you were adding two negative numbers i.e. if NEG 3.

To subtract, if the first number is positive and the second negative you are effectively adding two numbers, so tine 8040 sends the strings to be added; similarly if the first number is negative and the second positive yon are adding the two negative numbers, so line 8030 sends the strings to be added.

Lines 8050 and 8060 ensure that
both numbers have the same number of decimal places.

Line $81 \% 0$ then finds the position of the decimal point, using the same reasoning that let line 7670 position the point for the add routine-

To multiply, line 8640 makes the final answer negative if one of the numbers was positive and the other negative. This line also places the decimal point for you - when you multiply a number with x digits after the point by a number with y digits after the point the answer will have $x+y$ digiss after the point.

To divide, tine 90% finds approximately where the decimal point will be in the linal answer; the number of places before the point is roughly the difference in the numbers of places before the points in the original numbers.

ANSWER

l.ine 9100 allows for people dividing by numbers lens than 1 .

Lise 9120 sthecks if the second number is larger than the First, in which case the answer will have one lewer digit before the point.

I-inally line 9130 works out lie final answer miraculously.

When you have typed-in the program you will see thal the lines from 100 to 7000 have been left blank and, as you may have gucssed, that is where you put your problems. They should take the form III:F ES "First No." : bs:I \$S - "Second No." followed by one of the following:

GOSUB ADD

GOSUB SUBTRACT
GOSUB MULTIPLY
(iOSUB DIVIDE:
depending on how you wish the strings to be manipulated.

Also, if you require them, you have 17 memorics al your disposal - all of the string variables except those used in the program. Do not use AS. BS, CS, DS, FS, RS, S\$, TS, or ZS. For exampte, LET M\$ - T\$ will put the result of the last calculation in memory M\$. Before using those memories, however, you should check that you reed to store the number, because remembering very large numbers will use up a greal deal of your
precious RAM - the program takes about 3. IK and another 300 bytes are used by the minimum variables necessary for the program to run. That, of course, will increase considerably when you have to add your own lines.

100 NOT RUN

If, however, you are unfortunate enough to get error 4 OUT OF MEMORY then do not usc RUN or CLEAR as they will crase the program variables. Instead you should do one of the following:
l.ook through the routine you are using and see which string variables are not used and sel them to the cmply string - e.g., 7.5 is not used in the ADD routine, so if you run out of menory while using the routine LitT 75 = '* followed by CONTINUE may help.

The following lines may be removed as they are not important to the running of the program - 1 , $7500,8000,8500,9000,9500.9650$, 9900 , and also line 2 if you do not mind sacrificing my vanity.

If you are still short of memory the only solutions is to start cannibalising the routines you are not using and then reLOAD the program before using it again.

The main use of the program will be for normal $+,-*, \%$ and here is an example which will divide 97402.000055 by 98.64 and wild then add $65-$ (0) do this sum you shoutd add the following lines to the main problem:
100 1.ET F5 = "97402.000055"
110t.t:I SS -- "98.64"
120 GOSUB DIVIIEE
130 LET FS = TS
140 I.ET SS ". 65°
150 (iOSUA ADD
Another use of the program is to find high powers of numbers by multiplying repeatedly by the same number. For example, to find the exact value of 17.64 to the power of 35 , lines 100 to 150 from above should be removed and the following lines should be added:
100 IET FS $=$ =" $17.64 "$
110 FOR Y $=2$ TO 35
120 LET SS $=$ " 17.64 "
130 GOSUB MUL:TIPJ.Y

140 LET FS = TS

150 NEXT Y

Once this program is ruming satisfactorily I suggest you go for a strol! to the local shops and buy a paper and a box of tea bags as the program is very slow to reach the exact answer.

Remember when using FOR NEXT loops that you must not use the variables used in the main program as the loop counter - i.e., do not use P, F. $\mathrm{Z}, \mathrm{R}, \mathrm{G}, \mathrm{A}$, or H as the loop counter.

Another function which can be persformed easily using this progrant, but is not practical withoul it, is a factoriat routine. The factorial of a mumber can be found by multiplying all the numbers between 1 and the number together, i.e., 6 factorial (6!) $\left.6^{\circ} 5^{\circ} \mathbf{4}^{*} 1 * 3^{*} 2^{*} 1\right)$

SMAIL, ROUTINE

Tos find the factorials of $1(0), 69$, and 30 the following lines should be added to the main program:
100 IIIT FS " 2 ""
110 IOOR $Y=3$ to 100
120 I.L:I S\$ - STR\$ Y
130 GOSU13 MUL TIFI.Y
140 L.ET FS = TS
150 JF Y - 30 THEN PRINT * 30 Factorial is ": T\$
160 If Y - 69 TIIEN IPRINT **69 lactorial is ${ }^{\prime \prime}$: TS
170 NLEXT Y
I80 PRINT " 100 Factorial is ";
Belore finally leaving Spectrum owners I would like you all to try to write a small routine - the onts you write are always the best - which will round the last digit of the total -- i.e., it will round 0.6666 up to 0.667 and will round 8.3422 down to 8.342 which may make the final answer more meaningful. Without the rouline $10 / 3 * 3$ will give the answer 9.999 but with the routinc the 9.999 will be rounded-up to the proper 10 .

If you have not already done so, 1ry 10 write this routine on a piece of paper - or on the computer if you find it easier to concentrate when sitting in frost of the keyboard. If your toutinc works it will show that you understand at least the basics of the program and should be able to adapt the routiste if your particular problem needs the program altering

in some way．［ suppose ］had better show one rouline which will do the job for those who could nol bother and for those who could not get their routines to work properly：

I1 LET ROUND $=7450$ ：LEET ROU $=0$
7450 REM ROUND
7460 LET $\mathrm{F} \$=$ T $\$$ ；LET $\mathrm{S} \$=$＂$\$$＂ ： GOSUB DP
7465 LET DP2＝DPI ：LET NEG $=$ NEG＊3 ：LET ROU $=1$ ：GOSUB 7550
7470 IF TS（LEN TS）$=$＇．＂．THEN
LET T\＄＝T\＄（TO LEN T\＄－－1）
7475 LET＇TS（LEN T\＄）$=$＂ 0 ＂
7480 GOSUB ZR
7490 PRINT＂The answer aftes rounding is＇，T\＄
7675 IF ROU $=1$ THEN LEN $\mathrm{ROU}=0$ ：RETURN
And using GOTO ROUND wilt round the number in T\＄．

The program will go almost
siraight on to a $\mathrm{ZX}-81$ with only a few minor changes，due to the mulli－state－ nuent Jines on the Spectrum．Many of the lines can just be split into many separate tines，one after another．The only lines which will require any thought are those which contain IF THEN statements．

When translating them you must remember that if the statement is false－e．g．．if NEG $<>2$ for line 7520 －then the rest of the line is ignored，Most of the lines wist an IF THEN statement，atd also more than one statement，will therefore require a GOSUH and RETURN or a GOTO． An example is tine 7560 which could bee replaced by：
7560 IF DPI $>$ DP2 THEN GOTO 9700
9700 L．ET＇S $=\mathbf{S S}+{ }^{\text {＂}} 0$＂
9701 LET DP2＝DP2＋ 1
9702 （iOTO 7650
This approach slould help with all of the problem lines except line 9940.
which must be replaced by： 9940 FOR $F=1$ TO L．EN T\＄
9941 IF T\＄（F）＝＇＂．＇THEN GOTO 9950
99.42 NEXT F

9943 LET T $\$=\left({ }^{\prime \prime}\right.$＂$"$ and $\mathrm{NEG}=5)+\mathrm{T} \$$
9944 RETURN
You should be able to convert the rest of the program using those hints．

If you are still a 2X－80 owner，you will probably have to try to think how the routimes work and try to adapt them，remembering that the ZX－80 does numbers only as integers－the strings will still hold decimal numbers but the problem is gettiag the correct numbers into the strings in the proper order．If anyone wishes to try to adapl the program 1 wish then the best of luck but from what I remem－ ber of the ZX－80 it is probably easier for you to write your own program， using any ideas from my program which help you with the lask．

```
    1 REM PPRELISIUN
    $ REM ङ, RUSH 29G3
    7 INPIJT "NO, UF FLPLES SFUR &
IVISIUN>",F
```



```
T &|ETKNLT-B&OG LET MULTIPLY=具S
```



```
    LET 2R=9y5G1
    19 RE|| the protulems should go
motwaen ? ines <'0 and ;'0u0
```



```
    Gu SUE divide
    25 PRINT t真
```



```
ET s舟="-1E". LU SUE subterset. PR
```



```
GO SUE m&ltaply PRINT t竟: LET f
```



```
T4G0 PRINT "The answer is"; T* 
7499 STOP
75500 REM RDU
7510 GU SUE UP
7529 IF NEG=2 THEN LET NEL=|, G
O TU 80:G
PWGO IF NEG=1 THEN LET ROMF事,L
```



```
    LET UP1=[PPZ LET OP2=OP*3, LET
```

```
NEG=0. Gis TU BG20
7340 LET MULTvG
7550 LET T庳="", LET R=0
7560 IF DP1>UPR THEN LET S%=3年+
"G", LET OP2=0P2+1 &O TO THEU
```



```
7505 IF LEN F%\LENN S$ THEN LEN
```



```
7596 FOR F=G TU LEN LCH-1
P590 LET Z=9
TGBO IF LEN DEMF+1 THEN LET 2m&
AL 0再(LEN [13-F)
```



```
42:10
```



```
T=
PG:#\ LET R=INT R
TG40 NEKT F
CEOG IF MLLLT=1 THEN LEJ MELTTO,
    RETIJRN
```



```
+1 TG)
768G G0 T0 こ2R
BGGG REM SLETRALT
```


NEG＝B．Cis TU BG20

```
7346 LET MULTvG
736 IF DP1 PUP2 THEN LET S
```



```
7596 FOR F＝G TU LEN LU－1
TEOB IF LEN DENF +1 THEN LET 2rey AL 0再（LEN［13－F）
```



```
TG゚゙ひ LET R＝INT R
TG40 NEXT F
－EOG If MLLT＝1 THEN LET MELTTO， TIJRN
```



```
76日G GU T0 2
BGGG REM SLETRALT
```


：1393 IF NEL－1 THEN LET NEG＝j L i）Tu Praty
BHAS IF NEG＝C THEN I．LET NECOIS L i）TH P54is

BG\＆B IF LEN Sも LLEN F THEN LET

GGYG LET 官1 10
 あ LET E \ddagger＂ 5 ＂＋S G GO TO 9139
 －LET MES＝3－NEL
白130 FUR F＝LEN R TU 1 STEP－1
G149 LET R＝G
 THEN L．ET R＝2G

（UFLL E家（F）＋R1）$)+$ T
8170 LET R゙る＝INT ：Rぐも
G2SG NEMT F

＋1 TO ）

B20日G TO TO 2R
8399 REM MULTIPLY

B5：10 FOR CIFLEN B \＃TU 1 STEP -1
B3，35 LET Fだロ：LET Z事ご＂
18549 FUR F－LEN FT TU 1 STEP -1
 ＋R

日与90 NEXT F
B60日 FUR HE1 TU LEN E

9636 NEXT L
G640 LET T

SHOG REM OLUILIE

LET \ll URL F列F

－669 LET 2
ら事？

H13BG NENT F
YOWC PRINT 工程
 －- F2 $2+1$

 NEXT F

 HENT F
 1
912ら IF UP：3く1 THEN LET Z⿻＂＂G＂＋2

$T(s)$
G249 G1 TG ZR
9500 REM OP
9516 LET DP1の日：LET OPM m

IF Fました）
 T（ ）
9530 NEXT F

IF SecF ine＂．＂THEN LET CMCC＝KLEN
 TO
GSSO NEXT F
9560 REM NELATIVE
9570 LET NEGロG
9589 IF COUE F\＄WLULU＂－＂THEN L ET NEL＝1．LET F
9590 IF CUCE S
 ＇36930 RE TIJRN
9909 REM 2R
Y゙サ10 If LUUE T事＂UUOE＂－m＂THEN L

 RETURN
＇930 IF LUNE T事＝LCOE＂行＂THEN，L

 く〉＂。＂THEN NEST F：LET T $\%$＝と＂ー＂ ANC．NEG $=5$ ？+ T事 RETURW
 RETURH

ジラク IF NEG＝5 THEN LET T策＝＂ー＂＋T $\$$
YOFOIS RETURN

 The Complete Printed Circuit Workshop

Computer Cables \& Connectors
We now ofler an extensive range of computer cables \& connectors including a spectinm user port extender cabie. Send for complete cable \& connector price list.

SPECTRUM EXTENDER

Overcomes those interconnection problerns! Six inch double ended extender \& male PCB plug. Also available as single ended with 9 " of ribbon cable HB/2068 £4.76"
VIC/CBM 64 cassette interface
Operates with most dala recorders HB/3000 $£ 12.50^{\circ}$
Fult Hobbyboard Catalogue $\mathbf{L 1} .50^{\circ}$, rehindobe wh *Prces inclusive of VAT, camage 60 p in U.K. Overseas orders please add extra carriage

hobbyboard.

ativatima of
MELAN EMGIWERHOM LU
Mochttona Fath Merrepalt, M. Yows

ZX PROGRAMMERS

 look no further than

Whether you write MACHINE CODE or BASIC we have the very latest "state of the art" programming toofs for you. Iry them and see why our product is widely tegarded by professionals as the very best available
FULI SCREEN EDITOR/ASSEMBLER
($16 / 48 \mathrm{~K}$) voted THE MOST POWERFUL
MACHINE CODE PROGRAMMING TOOL YET
SEEN by HOME COMPUTER WEEKLY

- Editing facilities comparable to the mosi sophislicated word processor wilh MOVF, COPY and or DELETE lines ur blocks of cade.
- LOCATE. CHANGE ur DEL_ETE specified strings of characlers, full $\overline{Z .46}$ instruction sel supported. comprehensive synlax check. powerful expression evaluator, Ir derivatives inchuding stand alone and quash, symbol table display, assembly to screen, printer or save to tape and "SNAKE", a fully notated srsurce code riemonslsalion program
(PIUS 80 version for the KEMPSTON
CENTRONICS 80 COLUMN PRINTER INTERFACE now availablet.

MACHENE CODE TEST TOOL (16/48K)

lutor and te-bug program. coressides with the FUll. SCREEN EIHTR()及 fiSSF.MBL.TK in ARK 10 give a COMPLFTE MACHINE CODF: DEVELOPMENT ENVIRONMENT that is second (s) nome. The programmer can subth between presgrams withan imomeatis

- Alkast eatse tant and tesmug tif machane coded mestras deams
- Pasgen ant diaplatige mematy teghsters ses very whesher what happerning tisplisys Mellin and

 Illit 1ulsotion
MASTER TOOLKIT (16/48K), Y()UK HASIC WIII NB VF.H Br: THI! SAME: AgAlN!

 depplay VARIABSI I divplow and lomap

SOFTWARE SIMPLY THE BEST

ROBOTS are great fun but they arce expensive. Those used by British I.eydand cost tens of thousands of pounds while many cheaper designs aimed at schools, colkges and the enthusiasi cost autything belween $£ 7(00$ and $\mathbb{1 1 , 0 0 0}$. Those prices are clearly ousside the sange of the average pocket. the robot described here aims to rectify that situation lor 225 to 130 ; excludioge the ZX-81 and an $1 / O$ board, a stazll and simpte robotic arm can be constructed.

Although shis robor hats nto practical use, it serves at att excellent demonsaration tool or it can be huilt for pleasure. The materials required. apart from a ZX-8t and and 1/O board, are two Acom radtio control servos, some scraps of thin plywood or catd, a suitable box and some old Meccano, or similar, rods and wheels.

The construction method need not bee adhered to and the roivo should the adapted to suit the individuad int his materials. First the arm is constemetdd. The pattern of the arm - figuse one - is copied on to 1/isin. plywood or thick card. The arm is cut ont and folded along the dashed lines into a box shape. That is then taped or glued. Onee the atm is complete, two holes are made as indicated in figutre one. The holes are made using either

Stephen Crawford shows how by using existing materials and a ZX-81 you can obtain an idea of how large industrial concerns could develop in the years to come

a kniting needle or a special punching tool.

The rext step involves makisg a platform on to which the arm and servo motors are attaclied. The platform - ligure two - is cut from a piece of $1 / 2 \mathrm{in}$. plywood. Two Meccaks trackets - figure ohrec - are then bolted on 10 the platform as indicaled in figure two. If Mectano is uravailable, similar items can be made l'rom thin aluminium.

A lin. Mectano busil whed is placed inside the aris so thas the centre of the wheel is aljened with the two holes in the arm. The whole arm assembly is plated between the brack. ets and a 1 fjn . Meccano rod inserted through the holes. The bush wheed is

MATEREALS

The servos - Acosn AS-I -- used cosi between C 12 and E15. They faby be entaitucd from any model shop which suprlies Acom radio semarel equipmeta.

Since the number of slockists is emarmous, the best way of sinding is supplier af the servas would be to consull idvertisements in an appropriate magazise.

The $1 / 0$ board was obtained from Technomatfe Lid and cost £II. 50 plus VAT.
then glued 10 the arm and the grubscrew in the bush is lightened, fixing the arm and rod logether solidly figure four.

The next stage involves the mounting of the servo. A gearwhecl is fixed on to the right end of the rod, looking from thehind. 'The purpose of the wheel is to provide a large surlace area on to which a servo head may be attacled. The servo is then monnted on to the platform. The centre of the servo bead must be aligned acearately with the centre of the rod. To do tlat the servo musi be raised to the correct height.

Small blocks of wood glued to the platlorsm det as sapports. The servo is attached, bots to the gearwheel and the platiorm, by double-sided tape. It should be noted that the boll securing the servo bead to the servo should be removed, its it causes a bump which weakers the joint - figure five.

Once the robot part has beet made the nexs stage is consotuction of a basc. That is not critical and therefore detailed instruction has been omitted. Brictly, however, it can be made from wood or from a plastic or metal projects box. A diagram of minimum sizes is showly in figure six.

A suitatie hole is cut in the top of the box to accommodate tlie servo. Once the lrole has been cut, the servo is screwed into place. The platform

Figure t. All sizes in millimetres.
Materlals - thick card or $1 / 32 \mathrm{in}$. ply.

san then be attached to the base. To doo that a servo head is either taped -double-sided - or glued to the tuderside oll the platform - ligure iwo.

The platform should then be balanced. The robol arm is fully outstreched and small weights are taped on to the plalform in apprespriate positions so that the platform is balanced about the centre of the servo head. The servo head atatched to the platform is then connected to the servo on the base.

The final step involves constructing a hook for the end of the rothot arm. That is made from a paper clip bent into the correct shape. The completed hook is glued to the end of the arm. The robot is then complete and it is ready to be connected to the computer.

So that the robos may be controlled, it must be linked to the computer via an interface board. In the

prototype a Technomatic 1/O board was used. It consists of eight inputs and cight outputs but only two outputs are required. Onter output boards may be used but the machine code routine - figure nine - must be altered as in figure nine. The servos are connected to each line as shown in Figure seven. Orice that is complete the robot is ready to be programmed.
The radio control servos are controlled by changing the input pulse width between $1,000_{\mu} S$ and $2,000_{\mu} \mathrm{S}$. For simplicity there are 100 programmable positions, i.e., for every $10 \mu \mathrm{~S}$ the input pulse is increased the servo
will turn about one degree. The time between each pulse is of the order of $18.000)_{15}$. Figure eight illustrates the waveform required. The servos in the robor are controlled by a Z-80 machine code routine which is controlled by a Basic program. The machine code routine can be broken into three parts - the $18,0000_{\mu} S$ delay, the $1,000 \mu \mathrm{~S}$ pulse, and the adjustable part of the pulse, lasting 0-1,000 5 . The machine code routine and accompanying comments are in figure nine.

Untess you have an assembler the machine code will have to be loaded into the computer in decimal, using the londer program - progratm one. To enter the code the foader program is entered into the computer. The program is RUN and the decinal values - under the column Deeinal - from figure nine are entered one at a tinac, pressing NEWLINE after each value.

Once all the values have beers entered. press STOP Ihen NEWI.INE. That will terminate the loader program which is then deleted except for the REM statement in line one which will have laken \quad different appearance. Greal care must be laken when entering the machinc code, as one mistake can crash the program. If that happens the plug must be removed and the loading procedure repeated.

Figure 4 . val to wale ar peuportion.

IIsure 5. Nif to wale os prapurliath.

Figurt 6. Nol It wale ar progarticent.

The Basic program controlling the machine sode can then be entered. There are wo stech programs. The lirst - program fwo - is for manual control. It it the position of the servo mow is entered and the computer responds immediaicly. Program three
is for autornatic contred. fa this case He servo positions are stared in a Basic array. The program is used where sepxtabe movement is required - persaps to denonsirate a production tire roboric arm.

To operate the first, lines 20 to

Program 1: Marhitse code fuatiat

स I IHINI.
at IN|'|'| I
(1) fll|l|
[स] 14) kI I I
70 st H1111

$\$(x)$ arc chltred. Lines 240 atad 250 masy be allored to suit the design of the raber. 1 hasy have bex itseladed is cave the rolber hath at limit ta is movement, is which tasce the sefvo could ןu!l the ratoos apart.

When the program is RUN a small menu is displayed. It indicales whal code has io be entered for a certain mowement. A number is entered which corresponds to a command, e.g. . cotering 1 means that any movethent will be in the vertical asis - the arm will move. The computet then displays a promp: for the absoltale position. An integer between I and 99 is enlered and the computer will move immediately to the required position. fintering 50 centres the servo.

The second progrant operates by poking the rectuired data into the mathise code rounine from a Basic array. liach mavement requires two pieces of data - the axis of movement and the absolute position. The first piece of information is the axis of movement $-1=$ horizontal (turnfable): $2=$ werlical (arm). The absolute position is an integer between 1 and 99.

Propram 2：Manual cuntral．

$20+25 \mathrm{t}$
30 PRJN：！＂INIIR NLiAlBt K

MOWIMIIN1．I VI：RTL©
3 ＝｜｜CJR｜天tJNTA ${ }^{\prime}$ ．＇
dil INI＇LI ！
5f PRINI I

I？Blllon．＂
236 स「‥｜
 （：）（1）？2 1
250 If 1 illad $0>75(3 k 0)<51111 \mathrm{~N}$
（iryo）220

I ines 30 atnd so have to be changed slightly if addisiomal wteps afe re－ quired．For every one mewencat，the arraly is increamed in size by iwos， Hence ble IDIM stament shoutd also be increased by two．Line 40 shotald also be attered similarly．It should
 increased by two for every extra movemen．
The sibuation becomes elearer if the program in studied．In the demonstra－ tion program the data it the array shouks，when RUIN，make the rubot arm move almost lully up；rolate righ；kower the arm；patse：raise the arm；rolate left；lower the arms and pause．That sequence wild contituc until the robot is sponsed by hatting the prograth．
On the $\mathrm{ZX}-\mathrm{Bl}$ all the programs have to be RUN in FAST mode．The reason is that when the comptace is in Slow mode the progran is inter－ rupted maty times eath second so that the display may be updated．In that case the critical timing required may be upset．

The servo routine and frograms are not limited to the robot described． The same servos and software may also be used in other projects where critical and controlled movement is required

The robol witl not weld cars but，in addition to being an imeresting toy． shouid demonstrate what industrial robots do．

Figuer 9；Abwhine cade living．

Program 3：Amamatic contral．

2011 ASH
4）｜3M1 L（to
40 （iost）It lame
50）FOR

90 LET L＝USR 1651 ．
（ (x) v1－ $\mathrm{TT} \mid$
It（i）「（t） 50
1010 L．E：I（．1 1 ）＝1
IMO2 LI：I I（2）90
10は ：1：T I（3）＝＝
1005 \＆L：1（ 4 （
$1(x) 7$ ILT Lic5 $=1$
$1(0) \times:|\cdot| \mid(1)=10$

 10131.1 f $1(9)=1$ 10154 11． 1 \｛ $101=50$ TBif I FT b．（11）－2 1017 IET L．（ほ）か 10ヶ）1ト1［（13）＝1 1020 \｛ f：$\ddagger(14\}=10$ 1022（ETT（15）－1
1025：（1：1（16）＝10
600 K）RI：IURN

figure 10.

Dtawing of aervo plug - not to scale

Technomatic ItO board

Thi phugi wert conometed to the wiret ubing Veropins stuck in in axparimantor board. Veroboard could sta be ulsed it the pins were soldered in. Ping were uned because the spacing matched the phag. TTo while lead of servo il (Ta black lased of servo 1) TTo red lead of anrvo 71
(To white lgad of marvo 2)
(To black lend of servo 2)
[Yo red lased of sarvo 2)

Connection from $1 / 0$ board to servos

Bam_{1} E_{75}

Compuser Limited

- a mame you com trust

27 Vulcan Way, Now Addington, Groydon. Surrey CR9 OBG

POST YOUR OMDER TODAY

Sure! More than 10 tasks smmultaneously and, in some cases, up to 300 imes laster ' That's whal replacing the basic ROM with the new FORTH does for the 2×81 andmorel

Thestrans belund the ureakthrough belong to David Husband and he's buatding Skywave Soltware on the strength of it. Already orders are flooding if and it's easy lo sere why The 7×8 : FORIH ROM gnves you a libially new system In redditions to mulf tasking dnd spis! screen window capability, you (am alsoedit a plotigrater whule 1hree or lour others are erecuting. -itiedule idasks to fun from 50 times a second lo ance a year, and with a lut thet modification switch wetween FORIH and BASIC whenever you like

The 2×81 FORTHROM gives you a nurmal keyboard wilh a 64 character bulfer and repeat, it supports the $15 \mathrm{k}, 32 \mathrm{k}$, 64k RAM packs, it is ftg FORTH compatible and it supports the $2 X$ pronter

The price, 100 , 15 almost unbelicwable As a "fit il yourself Eprom", complete with manual, It'sjusi f $2 \mathrm{~S}+\mathrm{VAT}$
Add $£ 2$ pap UK if 5 Europe, $£ 10$ ourside Eurepel ands send your Order kithe iseldratistriblow

Shywave SOFTWARE

David Husbesid
73 Curzon Roadd Bouncmouth, BHI APW. LNGLAND tel (0202) 302383
|atetnälunal +44202302385 .

Oraminctand

Gentral Hall, Westminster, London S.W. 1 Wednesday 28th March 10.00am to 6.00pm Thursday 29th March 10.00am to 8.00pm Friday 30th March 10.00amto 5.00pm

Thu Binclair Bucction Exhibiten is planod ten give cll

 Prolopunt censumin's tinclelr computers. gyer SO leading zuppliars as well ar sinclif themandues wilk be damonstrating hardwara, sofmuwra, paripharale and supplif. All untar one encily meceabibte roof. This an idesl opporteuniky to liften eo informptive ealks, try out aystemb, wateh demonifr cticna men callact literature away irom tha interrruptione of sudants.
Admission is by tioket only and is limited to aducationtirats over 18 . Every edvcational getablishmant in the country in heing meifed with: Heketes, but if you would ilke rivis just write to: Tickat Difioa, Computar Marketplace (Exhibitionsi\} Led. ED, Drenge Strat, London WCRH 7 ED, stating your requitamenta,
to Computer Marketplace (Exhibitions) Ltd, 20 Orange Street, London WC2H 7ED

Please send me \qquad tickets for the Sinclair Education Exhibition NAME
ESTABLISHMENT

ADDRESS

Joe Pritchard continues his series on electronic theory, looking at interfacing different types of devices, buffers and other interesting areas

THIS llutf: we will lorsh all the
 deriess, at butlers, three-state desiees and the compute databos. Why is it Itsensatry 10 mis TII alld (VOS devices it circuity? The心ate setweral reathons. ()ne of then is that the (NOS devices load whateres they ate boumeced to by only a vinatl ambent - lese that lhat for ath t.S] Jl device. They also comsumke
 lions analable in the (Nos lamily whish are not atailable in the JIt Panily.
(Wioss unis call abo drize mote
 drive I.SIJl impuls. CNOS deviees will function on 5 voles, like tht, hut they will work satisfactorily up to 15 vols. Thus we miglu make an addres decoder circtait from Coms devies to minnine the loading eflect on the companer bat and imen intertace it to ISSTI devites for the rest of the circuit.

Table one shows the input and mes. pul boltane chatacteristics of $\mathrm{C} \mathbf{~} \mathrm{AOS}$ and L.S1] devices. They are lypical values fior the devices and so in prastice some variation from the figures is to be expected, let us consider the cate of interlacing a CMOS device to an I St th inpur. The following con-
ditions mus be anct:
i Vonf har chosi must exceed $V_{\text {III }}$ lor 111
ii V_{11} for CNOS mast the tess shan V_{11} ler ${ }^{1 / 1}$
iii The c (\$10) gate man be capable of handling tase cursent meeded by the 1 II gate to switeh correstly.
It is only in the late instance that we
fan-our w LST 71 . of 1 at best. To produce a successlal interfacing of signals, we employ a logic devicie Anown an a bulfer, The usual device it the $\$ 150$, a (MOS bufler with the ability Io supply tw currem needed.

The typical methods of ase lor the device are whown in ligure one, Jigher la veras the most common arrange. ment, with the pawer supply voltiges

need to take cate. The TJI inpul needs abount 0.3 mA when a fow inpet is applied and the © MOS output is not capable of providing that current. The desice may be able io provide Itre curgent but it is stot guaranteed and so we do not want to rely on it.

The CMOS gate has, therefore, a
rigure ith. (thing 41tan ms a level shanger.

for the ITI and CMOS parts of the circuit being at the same level.

That need not be the ease and in situations where the CMOS supply is bigleer than the TTJ supply, the circtil configuration of figure 16 is used.

In mosi logic devices, applying a 1 signal with a value in volts of more than the supply rail will damage the device. That is not so with the 4050 . In that application, we say that the 4050 is involved in a level conversion sole - i.e., translating a voltage represeming a logic 1 in one system into a voltage representing a 1 in another system, When used as a CMOS-toTTL converter, the buffer can provide suflicient current for iwo LSTTL gates. The pir-out for the device is shown in ligure two.

In the reverse situation, where we wish 10 interface a TTL output io a

Tuble 1. Charucteristics at 5V power supply.

Name	Description	CMOS \|\&урАсз)	$\begin{array}{c\|} \hline \text { TTL } \\ \text { dtypicals } \end{array}$
\bar{v}_{OH}	Output high voltage	5V	3.4 V
V_{OL}	Dutput low voltage	0.024	0.5 V
$V_{1 H}$	Voltage fof high input	3.5 V	2 V
V_{12}	Voltage for low inpur	1.5V	0.8v

CMOS inpu, the situation is casier. We have no current considerations. due to the very low requiremems of the (MOS deviess. So all we have 10 consider are the volsage tevels. When high, an I.STJP output is guaranteed to deliver about 2.4 volts. The minimam voltage a (MOS gate will recognise as a high input is between 3 and 4 volls.

They are the worse pussible cases but we must design our circuits with
as having the ability to buffer a circuit, they also perform a logical invert function. They are called invetting butfers.

Some typical buffers are the 741 S 16 and the 741.517 devices. The 16 devire is a bex inserting buffer and the 17 is a non-inverting device. The 4049 is al MOS hex inverting butfer. As weil as prowiding an interiticirg. function, we can otse al IVI. butier to increase the fan-bul of other 1.SITL devices, e.g.. feeding a standard TTI. bulfer lrenn an I.STTE. outpul and then raking the buffer output to otles 1.STIT devices.

A linal use of buflers is in the field of protesing delicate chips from humand beitgs. If we are using ath advansed chip such as a parallel input/ oupul device, known commestly as a PIO. then in experimental work or in edecalient it is at gesed idea to inpur signals tos the llo ouly tirenegh bull-
tigure 3, 1 it.-iti-(MGO interiate.

thens in misd. The answer is to use a simple resistor as a putloup cormponent. if liumetion is to ensure that wherever the TTl output goes high. the CMOS impal always sees a minimum ol 3.5 volts. That is shown in figure three. Obviously the resistor should be ol a valace so that when the TTL. output is low, the CMOS Bnpur is low as weil.

We hate atready seen the use of a buffer device in increasing the current availability from a logic device. Also we used a 7404 device in part one of the serice to helpu us drive a LEED. We coukd eavily have used a huffer. Bultets can be obtained in which, as well
ers. Io that way, il a high voltage was applied aceidentally the buflers would be damaged and not the more expensite PlO.

All the buffers we bave mentioned so far and which flate heltheged tha the TTL family have lad what are howow as lotem pole outputs. That rather graplic description relers to the internal design of the elajp. There are some buffers which have a difterent sype of imetnal circatiery at their outputs, while still being members of the tht family.

Those deviees are said to tave open collector outputs. The main diflerence so far as we are concerned is the

Table 2. Cumired of LSM45.

current and voblage ralings of the two sutput types. The spen collector out puts are capable of handling more current, typically up 10 4hmA. The 7407 and the 7406 are open sollector driver devices: the plorase driver is used rather than a bulfer because thone devises can handie more carrent. Applications are shown in figure four.

The 7406 device has an inverting functith and the 7407 a non-inverting function. In both cases, current lhows Ilirough tlee foad and into the 'FTL. outpul when the coutpat is low.

It is not oniy bulfers which are available with the open collector outputs: ofter logic devices bave them as well. A sypical example is the 9401. which is the open collector equivalent of the 7400 device. An interesting side-effed of the apen coilector device is that it emables yos to construct some fogic tuacions withour asing logic gates. An example is the wired ANI) gate shown in ligure five and its practical form in ligure six. The totenz pole autpua devies make this practice unwise tont it is easily and safely implemented on the open colfector devices.

Readers uantiany an explanation
Fixarit 2. Pin-out for tulsi.

 rebant for the home desiger, tor relesant for the home designter, for whom the exara expense is tsually mos (ou) greal.

We now diserss a gromp of devices Which are extremely important in the desigat of deviees to lit on to the computer tatabus. Fley are the three-state buffers, also known as trishate buflers. A threestate device las three output states. I hisom ibat one of the lirst things wie learned aboent bogie devices was that there ate two logic stales, 1 and 0 . Welt, the theseshile devises have those twe blate and a lhird state, known coloquially at the "llowt" state.
[a] that sondition, the sulput is said to present a bigh impedarace to athy device comected to it. When floating, the butput has no effect on a device commeted to it. It is ats if we had a switel! by which wis sould dis.
 device from the input of the next device. When the ousput in lloating. the three-state devier is satid to be disabled. When we atlow the outpul to assume a 1 or 0 logic value, we say that the deviee is enabled.
(Comend over whether a device is enahled or disableal in done via a pill oft the device. Figure seven shows the circuil symbol for at mom-inverting

shee-state buffer. I et us examine is few practical these-state buffers in the TTL family. the simplest is probably Ilee 7aLS S125, which is a quad mi-satate bufler. The pis-tots lor the device is shown ie ligure cigh. The cirche on the enable lise inditales llat it is ans astive kow line, i.e., dae line is laken (1) a logic 0 to emable the gater. The 741 Si 26 is identical except for the small difference laat the enable tine is taken high ter chable the gates.

Is each of those devices, there is ant indivialual ctable line for cath gate int the package. That is not usually the case, as often there are up to eiplat gates in the package. So lloe enable lines are said babe contmonned, in that several gates are controlled by the enable line. As example is the 741.5244 device whish hat cight butr. ers sontralked as I wo blecks at fous gates. Figure mine shows an applisation for this devies. When the control signal is low, the data on tlee eiglt line from the extersal logic is made availatle for the databus of the computer. The coanarol signal sould be gemerated by the coumputer. Wheon the signal goes hight again, it is ats if the J. 5244 were not connected to the databus of the computcr.

All the hulfer chip considered
have been undi-directional - in a certain circuit the device bas to be rewired to allow a signal to go in the other direction. It would be very useful if devices existed which would allow signats 10 flow in boils direstions depending on the state of a control signal to the device.

Such al chip exists, the $1 \mathbf{S} 245$. It is a TT1. deviee and allows two-waty or bidiectional data flow depending of the state al one of its pims. The pinout lor the device is shown in ligure 10. Jobe Cerminal the the chip is the enable line. That is an aetive low line, as indicated by the biar over the label, and is taken low to enable the bulf. ers. The lalk pin is the pin which

conarols the direction of dala litaw through the bulfers

Table two shows how combinalions all bhose twe pins control lise thulfers. Here, all eight bulfers are controlled by the dimes simultanecously. Obviosasly, the device will allow swo-way comantanicalion between the data lines conmected to it. If we enabled the chip and then tiok DIR to a logic low, data would llow from the Is

Figare 4 . Nion inverting bufler.

lines to the A lines. The lines connected to B are said to be transmitting data and the A lines are said to be receiving data. If we look the DIR line high, the situation would be reversed. As eight lines are involved, the device is often described as an octal bus transceiver.

Other three-state devices include the LS367 and the 81LS97. The latter unit is a member of a family of devices designed originally for use with the 8080 microprocessor but is useful in other applications. Nonc of the devices mentioned so far has been fatcleed. The idea will be discussed in detail text time but the basic concepts are that the devices so far examined have, when enabled, re-created at their outputs the data which was at their inputs at that moment.

A latched device can remember data which has been put there by a circuit until it is read. Even after it has been read, the latch can still hold the data until it is cold to forget the data.

The last operation is called re-setting the latch. Thus the latehed buffers are handy devices. In a previous article, in the June-July issuc of Sinclair Projects, I discussed the 8212 latch in some detail. As we have mentioned the computer bus in passing this time, let us took at it in more detail.

In a computer, the various com-
ponents which make up the device are linked by wires or tracks on printed circuit boards. Some lines, as the wires are called, carry information about the present state of the computer and they are calted control signals, as they control interactions between the microprocessor at the heart of the computer and the other devices in the circuit.

Those lines constitute the control bus. Other lines carry information relating to what the computer should do next and on what numbers the computer should next operate. The lines are the databus.

A further set of lines tells the computer where it can find its next instruction or data item. That is the address bus of the computer. The address bus and control bus are

usually uni-directional, although some control lines will be bi-directional. The data bus is bi-directional as it must carry data to and from the microprocessor.

Alt of those lines carry logic signals and have a fan-out like any other logic device. With regard to the address and control buses, buffering is not usually needed so long as only a few exira LSTTL or CMOS loads are placed on the address lines.

With several devices, buffering be-
comes necessary and could be done with some of the devices already seen. Buffering between devices added and the databus should be considered to be essential, so that when the device is not in use it does not interfere with the databus in any way. You can imagine the confusion which would confront the microprocessor if two unbuffered devices tried to send sig. nals to it at the same time, the situation which would occur if the devices were not isolated from the bus by the three-state buffers. Circuits which send data to the databus or devices which receive signals from the bus may be isolated by the use of unidirectional three-state buffers but devices which are expected to send and receive information wouid need bidirectional devices.

Memory chips, such as those which make up the RAM of Sinclair micros, often have thsee-state buffers built into them so that they can interface directly to the databus.

The concept of the bus will be explored further in a future part of the series. Next time, we will examine the second major group of logic devices - sequential logic circuits. They are the circuits whose logical behaviour depends to a certain extent on signals applied previously.

With regard to practical experiments, this time a few words on using CMOS devices might be in order. Due to their construction, CMOS devices need protecting from static electricity, which can damage them seriously. Although protection is often buittin, a little care will make life easier

for both you and the chip. The devices are usually protected up to about 4,000 volts and a static discharge of below that should not bother them. As you can generally develop a voltage on your fingers of up to 10,000 volts by walking across a nyIon carpet, care is still needed. So here are a few points to note when using CMOS devices:

- Never solder to them directly always use sockets. That also makes fault-finding easier.
- Most CMOS devices are delivered to the user with their pins either short-cireuited with conductive foam or with the pins stuck ino metal foil. Never remove the chip from that protection unil you are ready to use it in the circuit.
- When breadboarding circuits, insert the chip last. Never insert or remove a chip from a powered-up circuit.
- Try not to touch the legs of a CMOS device. When handling, try not to wear nylon clothing.
- Before handling, try to discharge any charge on you by touching a cold water tap or pipe.

They may seem extreme precautions but they are the ones 1 employ and I have not lost a CMOS chip yet. The construction method of the CMOS family makes their inputs very susceptible to electrical noise if they are left unconnected. Wish TTL de-
vices, unconnected inputs assume a logical value of t. That is not the case with CMOS gates and it is necessary to tie all unused inputs to either logic I or logic 0, depending on the logic function you are trying to achieve in the circuit.

Migure 10. Pinanut of 1.5245.

Project buyers' guide

HERE IS a list of suppliers for diflicult-10-obtain items which have Exiender cards for fitsing to fear of edge connector to allow stacking been used in projects. add-ons.
23.way for $2 X-81-$ ZXTONGUE
28-way for Spectrum - SPECTONGUE
mnovonics

PC8 mounting 3.5 mm . jack sockets as used in the Central Heating Controller project.

MS Components Ltd. Zephyr House, Waring Street, West Norwood, London SE27. Tel: 01-6704466.
Innovonies, 147 Upland Road, East Dutwich, London SE22.

UPDATE

Errors

December 1983/January 1984
Update, page 14. Waveforms: "lower Q should be $\overline{\mathrm{Q}}$ ".
Sound Generator, page 17, figure 3: "Cl should be 330 pr ".
Digital logic, page 24, figure 20: "The NOT gate should be in the other input to AND gate E".
Prowler, page 27, figure 1: "The connection from R4 to IC2 goes to pin I, $\overline{M R}$ '; page 30, figure 7: "pin 15 is R / W ".
Battery support, page 43 circuit layout: "'Connection A is by the top end of
R3".

Readers' Tips - Four-button keypad, pl3. The right-hand side of the figure skowing the connections to the 2X-81 PCB should be as below:

Joystick and Interface

for Sinclair Spectrum with these features to give you endiess hours of enjoyment.

1. Super positive response fire button.
2. Firm suction cups for stable one hand operation.
3. Snug tit hand moulded grip.
4. Adarional fire button.
5. Extra long 4 it lead.

The Interface supplied with the Quick Shot (©) has a two joysalicks facility.
The first port simulates 6789 \& 0 keys. The second port simulates in (31) command. it will run any Sortware.

1. Uising Keys 6, 7, 8, 9 and 0 .
2. Having redifinable key function.
3. Using in (31) l.e. Kempston:
4. Any Software you write yourself.

Keybotrd for
use with a Spectrum or 2×81
Our cased keyboard has 52 keys, 12 of which form a numeric pad. The 12 keys comprise $1-9$ numeric plus full stop and shift keys, ail in red, to distinguish from the main keyboard keys which are in grey, the keys contrast with the black case to form a very attractive unit. The case has been designed to take a $\mathrm{ZX81}$ or Spectrum computer. 16K, 32 K or 64 K can also be fitted to the motherboard inside the case (81 model only). The case is also large enough for other add-ons like the power supply to be fitted, giving a very smart self-contained unlt with which other add-ons e.g. printer etc. can still be used. Our $2 \times$ Professional keyboard offers more Keys and features than any other model in its price range making it the best value
keyboard avallable.

SpectraSound

The so-called speaker In your Spectrum is really on a buzzer', Wlth the OK Tronics "SPECTRA SOUND" you can generate fully amplifled sound through the speaker on your TV set. SPECTRA SOUND is a very simple but highly effective add-on. This mesins that you no longer have a faint beep but a highly ampilfied sound, which can be adjusted with the TV volume control. The SPECTRA SOUND fits compactly and neatly inside the Spectrum sase and is connected by three small crocodile clips.

Light pen

The LIGHT PEN enables you to produce high resolution drawings on your own TV screen simply by plugging into the ear socket of your Spectrum. The controlling software supplied with the light pen has 16 pre-defined Instructlons. You can change colour (Border, Paper, Ink), draw circles, arcs, boxes, lines and insert text onto the screen at any chosen place, you can also draw freehand. There is a feature to retain the screens and animate. On the 48 K Spectrum you can retain 5 screens. You can also use the machine code on its own in your own programs, for selecting out of a menu etc. The LIGHT PEN is supplied with a control Interface, to adjust the sensitivityipen alignment.

cin'myontics

[^0]: Mangging editor Nigel Clark Consultant editor David Bukkley Managing production editor Harold Mayes MEE News writer John Lambert
 Design Elaine Bishop Advertisement mamager John Ross Adverliseraent Execulive Rober Marcus Editorial assistent Coletse McDermott
 Production assistant Dezi Epaminondou Managing director Terry Cartwright Chmirman Richard Hease.
 Sinclair Projects is puhlished bi-moadhly by ECC Publications Lid. It is in mo way connected with Sinclair Research Lidd.
 Telephone, alt departments: 01-359 3525. If you would like \#r contribure to any of the Sinclair Uset group of publications please send programs, articles or ideas for hardware projects to Sinclair User and Projects, ECC Publications, 196-200 Balls Pond Road, London N1 4AQ. We pay £50 per 1,000 words for each articic used.
 (9) Copyright 1984 Sinclair Projects. ISSN 0264/0449. Printed and typeset by Cradley Print PLC, Warley, W. Midlands. Distributed by Spollight Magazine Distriburion Ltd, I Benwell Road, Holloway, London N7. 01-607 6411.

[^1]: 16600 40D8 CD 2B OF CALL SLOW.

 Matcolm Purves,
 Bristol.

[^2]: 「To: Sinclair Projects Special Offer, ECC Publications, 196-200 Balls Pond Road, Islington, London N1 4AQ Please send me \qquad ZX-81 kit(s) at the special Sinctair Projects price of $£ 25$ plus $£ 2.95$ p\&p.
 Please tick if you require a VAT receipt
 ${ }^{\text {* }} 1$ enclose a cheque/postal order payable to ECC Ltd for $£$
 1 *Please charge to my Access/Barclaycard/Trustcard account no. \qquad

 - P Please delece conuluite as arplicatic

 I Signature \qquad
 Name Mr/Mrs/Miss.
 Address \qquad

